百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

性能优化技巧:预关联

ccwgpt 2024-12-13 12:19 35 浏览 0 评论

一、 问题背景与适用场景


SQL中JOIN的性能是个老大难问题,特别是关联表较多时,计算性能会急剧下降。

SQL实现JOIN一般是采用HASH分堆的办法,即先计算关联键的HASH值,再将相同HASH值的记录放到一起再做遍历对比。每一个JOIN都要做一轮这样的运算。

如果数据量相对于内存并不是很大,可以事先全部加载到内存中,那么可以利用内存指针的机制,事先把关联关系建立好。这样做运算时就不必再做HASH与对比运算了。具体来说,就是在数据加载时一次性把HASH和对比运算做完,用指针方式保存关联结果,然后每次运算可以直接引用到关联记录,从而提高运算的性能。

不幸的是,SQL没有指针数据类型,无法实现这个优化逻辑,即使数据量可以在内存中装下,也很难利用预关联技巧提速,基于SQL的内存数据库也大都有这个缺点。而SPL有指针数据类型,就可以实现这种机制。

我们下面来测试一下SQL实现单表计算和多表关联计算的差距,再用SPL利用预关联技巧同样做一遍,看一下两者的差距对比。


二、 测试环境


采用TPCH标准生成的8张数据表,共50G数据(要小到能放进内存)。TPCH数据表的结构网上有很多介绍,这里就不再赘述了。

测试机有两个Intel2670 CPU,主频2.6G,共16核,内存128G,SSD固态硬盘。

由于 lineitem 表数据量太大,这台服务器内存不足以将它装入,所以创建了一张表结构与它一样的表 orderdetail, 将数据量减少到内存能装下,下面就用这张表来做测试。

为方便看出差距,下面测试都用单线程计算,多核并不起作用。


三、 SQL测试


这里用 Oracle 数据库作为 SQL 测试的代表,从orderdetail表里查询每年零件订单的总收入。

1. 两表关联

查询的SQL语句如下:

select

l_year,

sum(volume) as revenue

from

(

select

extract(year from l_shipdate) as l_year,

(l_extendedprice * (1 - l_discount) ) as volume

from

orderdetail,

part

where

p_partkey = l_partkey

and length(p_type)>2

) shipping

group by

l_year

order by

l_year;

2. 六表关联

查询的SQL语句如下:

select

l_year,

sum(volume) as revenue

from

(

select

extract(year from l_shipdate) as l_year,

(l_extendedprice * (1 - l_discount) ) as volume

from

supplier,

orderdetail,

orders,

customer,

part,

nation n1,

nation n2

where

s_suppkey = l_suppkey

and p_partkey = l_partkey

and o_orderkey = l_orderkey

and c_custkey = o_custkey

and s_nationkey = n1.n_nationkey

and c_nationkey = n2.n_nationkey

and length(p_type) > 2

and n1.n_name is not null

and n2.n_name is not null

and s_suppkey > 0

) shipping

group by

l_year

order by

l_year;

3. 测试结果



两个查询语句都用了嵌套写法,Oracle自动优化后的计算性能比无嵌套时还要好一些(无嵌套时group by和select有可能会有重复计算)。

这两个测试数据是多次运行后的结果,在测试中发现,Oracle 在第一次运行某查询时,往往比第 2、3... 次要慢很多,说明在内存大于数据量时,数据库可以把全部数据都缓存进内存(Oracle的缓存很强),所以我们取多次运行中最快那一次的时间,这样就几乎没有硬盘读取时间,仅是运算时间。

同时,在上面两组测试中,过滤条件始终都为真,也就是没有对数据产生实质过滤,两个查询都涉及orderdetail表的全部记录,计算规模是相当的。

从测试结果可以看出,六表关联比两表关联慢了167/26=6.4倍!性能下降非常多。排除掉硬盘时间后,这里增加的时间主要就是表间关联以及针对关联表字段的判断,而这些判断非常简单,所以大部分时间消耗在表间关联上。

这个测试表明,SQL的JOIN性能确实很差。


四、 SPL预关联测试


1. 预关联

实现预关联的SPL脚本如下:

脚本中前7行分别将7个组表读入内存,生成内表,并设成全局变量。后5行完成表间连接。在SPL服务器启动时,就先运行此脚本,完成环境准备。

我们来看看预关联后,内存中表对象的数据结构,以orderdetail为例:

图中只列了orderdetail的第一条记录的预关联情况,其它记录与此类似。限于版面宽度,各表只列出了部分字段。


2. 两表关联

编写SPL脚本如下:


3. 六表关联

编写SPL脚本如下:

预关联后,SPL代码也非常简单,关联表的字段直接可以作为本表字段的子属性访问,很易于理解。


4. 运行结果



六表关联仅仅比两表关联慢2倍,基本上就是增加的计算量(引用这些关联表字段)的时间,而因为有了预关联,关联运算本身不再消耗时间。


五、 结论


测试结果汇总:

六表关联比两表关联,SQL慢了6.4倍,说明SQL处理JOIN消耗CPU很大,性能降低明显。而采用预关联机制后的SPL只慢2倍,多JOIN几个表不再出现明显的性能下降。

在进行关联表较多的查询时,如果内存大到足以将数据全部读入内存(内存数据库的应用场景),使用预关联技术将极大地提升计算性能!而关系数据库(包括内存数据库)用SQL语言则无法实现这一优化技术。

相关推荐

一个基于.Net Core遵循Clean Architecture原则开源架构

今天给大家推荐一个遵循CleanArchitecture原则开源架构。项目简介这是基于Asp.netCore6开发的,遵循CleanArchitecture原则,可以高效、快速地构建基于Ra...

AI写代码翻车无数次,我发现只要提前做好这3步,bug立减80%

写十万行全是bug之后终于找到方法了开发"提示词管理助手"新版本那会儿,我差点被bug整崩溃。刚开始两周,全靠AI改代码架构,结果十万行程序漏洞百出。本来以为AI说没问题就稳了,结果...

OneCode低代码平台的事件驱动设计:架构解析与实践

引言:低代码平台的事件驱动范式在现代软件开发中,事件驱动架构(EDA)已成为构建灵活、松耦合系统的核心范式。OneCode低代码平台通过创新性的注解驱动设计,将事件驱动理念深度融入平台架构,实现了业务...

国内大厂AI插件评测:根据UI图生成Vue前端代码

在IDEA中安装大厂的AI插件,打开ruoyi增强项目:yudao-ui-admin-vue31.CodeBuddy插件登录腾讯的CodeBuddy后,大模型选择deepseek-v3,输入提示语:...

AI+低代码技术揭秘(二):核心架构

本文档介绍了为VTJ低代码平台提供支持的基本架构组件,包括Engine编排层、Provider服务系统、数据模型和代码生成管道。有关UI组件库和widget系统的信息,请参阅UI...

GitDiagram用AI把代码库变成可视化架构图

这是一个名为gitdiagram的开源工具,可将GitHub仓库实时转换为交互式架构图,帮助开发者快速理解代码结构。核心功能一键可视化:替换GitHubURL中的"hub...

30天自制操作系统:第六天:代码架构整理与中断处理

1.拆开bootpack.c文件。根据设计模式将对应的功能封装成独立的文件。2.初始化pic:pic(可编程中断控制器):在设计上,cpu单独只能处理一个中断。而pic是将8个中断信号集合成一个中断...

AI写代码越帮越忙?2025年研究揭露惊人真相

近年来,AI工具如雨后春笋般涌现,许多人开始幻想程序员的未来就是“对着AI说几句话”,就能轻松写出完美的代码。然而,2025年的一项最新研究却颠覆了这一期待,揭示了一个令人意外的结果。研究邀请了16位...

一键理解开源项目:两个自动生成GitHub代码架构图与说明书工具

一、GitDiagram可以一键生成github代码仓库的架构图如果想要可视化github开源项目:https://github.com/luler/reflex_ai_fast,也可以直接把域名替换...

5分钟掌握 c# 网络通讯架构及代码示例

以下是C#网络通讯架构的核心要点及代码示例,按协议类型分类整理:一、TCP协议(可靠连接)1.同步通信//服务器端usingSystem.Net.Sockets;usingTcpListene...

从复杂到优雅:用建造者和责任链重塑代码架构

引用设计模式是软件开发中的重要工具,它为解决常见问题提供了标准化的解决方案,提高了代码的可维护性和可扩展性,提升了开发效率,促进了团队协作,提高了软件质量,并帮助开发者更好地适应需求变化。通过学习和应...

低代码开发当道,我还需要学习LangChain这些框架吗?| IT杂谈

专注LLM深度应用,关注我不迷路前两天有位兄弟问了个问题:当然我很能理解这位朋友的担忧:期望效率最大化,时间用在刀刃上,“不要重新发明轮子”嘛。铺天盖地的AI信息轰炸与概念炒作,很容易让人浮躁与迷茫。...

框架设计并不是简单粗暴地写代码,而是要先弄清逻辑

3.框架设计3.框架设计本节我们要开发一个UI框架,底层以白鹭引擎为例。框架设计的第一步并不是直接撸代码,而是先想清楚设计思想,抽象。一个一个的UI窗口是独立的吗?不是的,...

大佬用 Avalonia 框架开发的 C# 代码 IDE

AvalonStudioAvalonStudio是一个开源的跨平台的开发编辑器(IDE),AvalonStudio的目标是成为一个功能齐全,并且可以让开发者快速使用的IDE,提高开发的生产力。A...

轻量级框架Lagent 仅需20行代码即可构建自己的智能代理

站长之家(ChinaZ.com)8月30日消息:Lagent是一个专注于基于LLM模型的代理开发的轻量级框架。它的设计旨在简化和提高这种模型下代理的开发效率。LLM模型是一种强大的工具,可以...

取消回复欢迎 发表评论: