百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

GaussDB高智能--自治运维技术:分布键推荐

ccwgpt 2024-12-15 11:14 29 浏览 0 评论

9 分布键推荐

分布键推荐功能主要针对Hash分布策略进行推荐,为每个表推荐合适的分布建,使得整体工作负载的运行效率达到最优。

分布键推荐功能的执行流程图如下:

图 分布键推荐功能执行流程

分布键推荐功能根据时间节点划分,可划分为两种使用场景,一是在数据迁移前,可支持两种数据格式,一种是基于友商数据库中的存储过程和少量关于数据分布的统计信息,另一种是基于友商数据库的统计报告和少量关于数据分布的统计信息进行初步的分布键推荐;该场景可以在迁移工具进行集成,在迁移过程中,调用该工具完成业务迁移。二是在完成数据迁移并运行一段时间业务后,基于真实的工作负载和优化器的代价估计,进一步改进和完善分布键的推荐结果。

在初始阶段,为防止数据倾斜的问题,先将根据表的统计信息,首先将可能造成分布严重倾斜的列从分布键的候选集合中排除出去。具体而言,计算表中每列上不同值的个数和表的总行数的比值,只有当该比值大于设定的阈值时,该列将加入分布键推荐的候选集合。

(1)场景一:数据迁移前

将友商数据库中全部的workload(如存储过程、SQL语句)导出到文件中;

使用sqlparse模块(Python第三方库,一种SQL语法解析包)对存储过程语句进行词法和语法解析;

提取出所有的join条件,采用基于粗略代价估计的图算法针对join关系进行分布键的推荐;

提取出所有的group子句,统计高频的列,并加入分布键的候选推荐;

选择主键的第一列,加入分布键的候选推荐;

步骤3到5,作为分布键的候选列的优先级依次降低,对每个表,返回优先级最高的列作为最终的推荐结果。

(2)场景二:运行业务后

  • 采用场景一推荐的分布键或者默认的分布键设置,完成从Oracle到GaussDB的数据迁移;
  • 获取工作负载。提供2种方式获取:一是从日志中自动解析和抽取;或者从数据库的WDR功能提供的视图中获取;
  • 连接数据库获取SQL语句的执行计划;
  • 使用sqlparse对SQL语句进行词法和语法解析;
  • 提取出所有的join条件,采用基于优化器代价估计的图算法针对join关系进行分布键的推荐;
  • 提取出所有的group子句,基于优化器的执行计划,计算和统计其中高代价的列,并加入分布键的候选推荐;
  • 提取出所有的谓词表达式predicate,当该predicate的结果集大小大于设定的阈值时,考虑将数据打散到各个节点,因此predicate中的列不考虑加入分布键的候选推荐;反之,当该predicate的结果集大小小于设定的阈值时,将predicate中的列加入分布键的候选推荐;
  • 选择主键的第一列,加入分布键的候选推荐;

步骤5到8,作为分布键的候选列的优先级依次降低,对每个表,返回优先级最高的列作为最终的推荐结果。

分布键推荐功能的详细设计如下:

分布键推荐功能的核心算法是基于粗略/优化器代价估计的图算法,主要包括下面内容:

(1)根据提取的join关系建图,图中的顶点代表数据库中的表,图中的边代表两个表之间的连接关系,每个边包含两个属性,每个边的权重为join关系的代价。例如,当提取的join关系为

(t1、t2和t3为表,c1、c2和c3为对应关系中的列名),则join关系的图如下图所示:

(2)根据代价计算方式的不同,可分为基于粗略代价估计的图算法和基于优化器代价估计的图算法。

粗略的代价估计方式:如果存在两个表t1和t2,其大小分别为b1和b2,

为节点的总数量,则对两表join的代价

可采用下式进行估计,即为当join关系采用重分布或广播时产生的代价中的最小值:

基于优化器的代价估计方式:在一些SQL中,在执行join前可能会对其中的表进行过滤和筛选,并不是全表进行关联,因此使用优化器对join关系的估计代价更为精确。

(3)采用贪心策略的图算法:

建完图后,分布键的推荐问题转化为在该图上求解优化问题:在join关系图中,每个顶点最多选择一个属性作为分布键,在满足限制条件下,尽可能多地选择边,使得选中的所有边的权重和最大。为了求解上述优化问题,采用基于贪心策略的图算法进行求解。

算法一:

首先初始化两个空的候选集合

,然后对于所有与u相连的边,选择出权重最大的边,并将此边的另一个顶点加入候选集合

重复以上过程。依次在候选集合

中增加顶点,最终选取两者中权重和最大的集合作为最终的推荐结果。

算法二:将图中所有的边按照权重从高到低进行排序,然后从最高权重的边依次进行处理,如果当前边是合法的,则加入结果集。每次向结果集中加入一个顶点后,一部分以该顶点为端点并且连接属性不一致的边将会失效,视为不合法的状态。返回结果集作为推荐结果。

相关推荐

定时任务工具,《此刻我要...》软件体验

之前果核给大家介绍过一款小众但实用的软件——小说规则下载器,可以把网页里的小说章节按照规则下载到本地,非常适合喜欢阅读小说的朋友。有意思的是,软件作者当时看到果核写的体验内容后,给反推荐到他的帖子里去...

前端定时任务的神库:Node-cron,让你的项目更高效!

在前端开发中,定时任务是一个常见的需求。无论是定时刷新数据、轮询接口,还是发送提醒,都需要一个可靠且灵活的定时任务解决方案。今天,我要向大家介绍一个强大的工具——Node-cron,它不仅能解决定时任...

Shutter Pro!一款多功能定时执行任务工具

这是一款可以在电脑上定时执行多种任务的小工具,使用它可以根据时间,电量等来设定一些定时任务,像定时打开程序、打开文件,定时关机重启,以及定时弹窗提醒等都可以轻松做到。这是个即开即用的小工具,无需安装,...

深度解析 Redis 缓存击穿及解决方案

在当今互联网大厂的后端开发体系中,Redis缓存占据着极为关键的地位。其凭借高性能、丰富的数据类型以及原子性操作等显著优势,助力众多高并发系统从容应对海量用户的访问冲击,已然成为后端开发从业者不可或...

从零搭建体育比分网站完整步骤(比较好的体育比分软件)

搭建一个体育比分网站是一个涉及前端、后端、数据源、部署和维护的完整项目。以下是从零开始搭建的详细流程:一、明确项目需求1.功能需求:实时比分展示(如足球、篮球、网球等)支持多个联赛和赛事历史数据查询比...

告别复杂命令行:GoCron 图形界面让定时任务触手可及

如果你是运维人员或者经常接触一些定时任务的配置,那么你一定希望有一款图形界面来帮助你方便的轻松配置定时任务,而GoCron就是这样一款软件,让你的配置可视化。什么是GoCron从名字你就可以大概猜到,...

Java任务管理框架核心技术解析与分布式高并发实战指南

在当今数字化时代,Java任务管理框架在众多应用场景中发挥着关键作用。随着业务规模的不断扩大,面对分布式高并发的复杂环境,掌握其核心技术并进行实战显得尤为重要。Java任务管理框架的核心技术涵盖多个方...

链表和结构体实现:MCU软件定时器(链表在单片机中的应用)

在一般的嵌入式产品设计中,介于成本、功耗等,所选型的MCU基本都是资源受限的,而里面的定时器的数量更是有限。在我们软件设计中往往有多种定时需求,例如脉冲输出、按键检测、LCD切屏延时等等,我们不可能...

SpringBoot定时任务(springboot定时任务每小时执行一次)

前言在我们开发中,经常碰到在某个时间点去执行某些操作,而我们不能人为的干预执行,这个时候就需要我们使用定时任务去完成该任务,下面我们来介绍下载springBoot中定时任务实现的方式。定时任务实现方式...

定时任务新玩法!systemd timer 完整实战详解

原文链接:「链接」Hello,大家好啊!今天给大家带来一篇使用systemdtimer实现定时任务调度的详细实战文章。相比传统的crontab,systemdtimer更加现代化、结构清晰...

Celery与Django:打造高效DevOps的定时任务与异步处理神器

本文详细介绍了Celery这一强大的异步任务队列系统,以及如何在Django框架中应用它来实现定时任务和异步处理,从而提高运维开发(DevOps)的效率和应用性能。下面我们先认识一下Cele...

订单超时自动取消的7种方案,我用这种!

前言在电商、外卖、票务等系统中,订单超时未支付自动取消是一个常见的需求。这个功能乍一看很简单,甚至很多初学者会觉得:"不就是加个定时器么?"但真到了实际工作中,细节的复杂程度往往会超...

裸机下多任务框架设计与实现(gd32裸机配置lwip 网络ping不通)

在嵌入式系统中,特别是在没有操作系统支持的裸机环境下,实现多任务执行是一个常见的挑战。本文将详细介绍一种基于定时器的多任务框架设计,通过全局时钟和状态机机制,实现任务的非阻塞调度,确保任务执行中不会出...

亿级高性能通知系统构建,小白也能拿来即用

作者介绍赵培龙,采货侠JAVA开发工程师分享概要一、服务划分二、系统设计1、首次消息发送2、重试消息发送三、稳定性的保障1、流量突增2、问题服务的资源隔离3、第三方服务的保护4、中间件的容错5、完善...

运维实战:深度拆解Systemd定时任务原理,90%的人不知道的玩法

运维实战:深度拆解Systemd定时任务原理,90%的人不知道的高效玩法一、Systemd定时任务的核心原理Systemd定时任务是Linux系统中替代传统cron的现代化解决方案,通过...

取消回复欢迎 发表评论: