从原理到实战,一份详实的 Scrapy 爬虫教程
ccwgpt 2024-09-20 13:20 59 浏览 0 评论
来源:早起Python
作者:饮马长江
大家好,我是早起。
之前分享了很多 requests 、selenium 的 Python 爬虫文章,本文将从原理到实战带领大家入门另一个强大的框架 Scrapy。如果对Scrapy感兴趣的话,不妨跟随本文动手做一遍!
一、Scrapy框架简介
Scrapy是:由Python语言开发的一个快速、高层次的屏幕抓取和web抓取框架,用于抓取web站点并从页面中提取结构化的数据,只需要实现少量的代码,就能够快速的抓取。
二、运行原理
Scrapy框架的运行原理看下面一张图就够了(事实上原理是比较复杂的,也不是三言两语能够说清楚的,因此感兴趣的读者可以进一步阅读更多的相关文章来了解,本文不做过多讲解)
Scrapy主要包括了以下组件:
- 引擎(Scrapy Engine)
- Item 项目
- 调度器(Scheduler)
- 下载器(Downloader)
- 爬虫(Spiders)
- 项目管道(Pipeline)
- 下载器中间件(Downloader Middlewares)
- 爬虫中间件(Spider Middlewares)
- 调度中间件(Scheduler Middewares)
三. 入门
3.1安装
第一种:在命令行模式下使用pip命令即可安装:
$ pip install scrapy
第二种:首先下载,然后再安装:
$ pip download scrapy -d ./
# 通过指定国内镜像源下载
$pip download -i https://pypi.tuna.tsinghua.edu.cn/simple scrapy -d ./
进入下载目录后执行下面命令安装:
$ pip install Scrapy-1.5.0-py2.py3-none-any.whl
3.2使用
使用大概分为下面四步 1 创建一个scrapy项目
scrapy startproject mySpider
2 生成一个爬虫
scrapy genspider demo "demo.cn"
3 提取数据
完善spider 使用xpath等
4 保存数据
pipeline中保存数据
3.3 程序运行
在命令中运行爬虫
scrapy crawl qb # qb爬虫的名字
在pycharm中运行爬虫
from scrapy import cmdline
cmdline.execute("scrapy crawl qb".split())
四、基本步骤
Scrapy 爬虫框架的具体使用步骤如下:
“选择目标网站定义要抓取的数据(通过Scrapy Items来完成的)编写提取数据的spider执行spider,获取数据数据存储”
五. 目录文件说明
当我们创建了一个scrapy项目后,继续创建了一个spider,目录结构是这样的:
下面来简单介绍一下各个主要文件的作用:
“
scrapy.cfg :项目的配置文件
mySpider/ :项目的Python模块,将会从这里引用代码
mySpider/items.py :项目的目标文件
mySpider/pipelines.py :项目的管道文件
mySpider/settings.py :项目的设置文件
mySpider/spiders/ :存储爬虫代码目录
”
5.1 scrapy.cfg文件
项目配置文件。这个是文件的内容:
# Automatically created by: scrapy startproject
#
# For more information about the [deploy] section see:
# https://scrapyd.readthedocs.io/en/latest/deploy.html
[settings]
default = mySpider.settings
[deploy]
#url = http://localhost:6800/
project = mySpider
5.2 mySpider**/**
项目的Python模块,将会从这里引用代码
5.3 mySpider/items.py
项目的目标文件
# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html
import scrapy
class MyspiderItem(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
pass
定义scrapy items的模块,示例: name = scrapy.Field()
5.4 mySpider/pipelines.py
项目的管道文件
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html
# useful for handling different item types with a single interface
from itemadapter import ItemAdapter
class MyspiderPipeline:
def process_item(self, item, spider):
return item
这个文件也就是我们说的管道,当Item在Spider中被收集之后,它将会被传递到Item Pipeline(管道),这些Item Pipeline组件按定义的顺序处理Item。每个Item Pipeline都是实现了简单方法的Python类,比如决定此Item是丢弃而存储。以下是item pipeline的一些典型应用:
- 验证爬取的数据(检查item包含某些字段,比如说name字段)
- 查重(并丢弃)
- 将爬取结果保存到文件或者数据库中
5.5 mySpider/settings.py
项目的设置文件
# Scrapy settings for mySpider project
...
BOT_NAME = 'mySpider' # scrapy项目名
SPIDER_MODULES = ['mySpider.spiders']
NEWSPIDER_MODULE = 'mySpider.spiders'
.......
# Obey robots.txt rules
ROBOTSTXT_OBEY = False # 是否遵守协议,一般给位false,但是创建完项目是是True,我们把它改为False
# Configure maximum concurrent requests performed by Scrapy (default: 16)
#CONCURRENT_REQUESTS = 32 # 最大并发量 默认16
......
#DOWNLOAD_DELAY = 3 # 下载延迟 3秒
# Override the default request headers: # 请求报头,我们打开
DEFAULT_REQUEST_HEADERS = {
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Language': 'en',
}
# 爬虫中间件
#SPIDER_MIDDLEWARES = {
# 'mySpider.middlewares.MyspiderSpiderMiddleware': 543,
#}
# 下载中间件
#DOWNLOADER_MIDDLEWARES = {
# 'mySpider.middlewares.MyspiderDownloaderMiddleware': 543,
#}
......
# Configure item pipelines
# See https://docs.scrapy.org/en/latest/topics/item-pipeline.html
#ITEM_PIPELINES = {
# 'mySpider.pipelines.MyspiderPipeline': 300, # 管道
#}
.......
省略号省略代码,一般重要点,给了注释
6.mySpider/spiders/ :存储爬虫代码目录
import scrapy
class DbSpider(scrapy.Spider):
name = 'db'
allowed_domains = ['douban.com'] # 可以修改
start_urls = ['http://douban.com/'] # 开始的url也可以修改
def parse(self, response):
# pass
六. Scrapy shell
Scrapy终端是一个交互终端,我们可以在未启动spider的情况下尝试及调试代码,也可以用来测试XPath或CSS表达式,查看他们的工作方式,方便我们爬取的网页中提取的数据,但是一般使用的不多。感兴趣的查看官方文档:
官方文档
http://scrapy-chs.readthedocs.io/zh_CN/latest/topics/shell.html
Scrapy Shell根据下载的页面会自动创建一些方便使用的对象,例如 Response 对象,以及 Selector 对象 (对HTML及XML内容)。
- 当shell载入后,将得到一个包含response数据的本地 response 变量,输入 response.body将输出response的包体,输出 response.headers 可以看到response的包头。
- 输入 response.selector 时, 将获取到一个response 初始化的类 Selector 的对象,此时可以通过使用 response.selector.xpath()或response.selector.css() 来对 response 进行查询。
- Scrapy也提供了一些快捷方式, 例如 response.xpath()或response.css()同样可以生效(如之前的案例)。
Selectors选择器
“
Scrapy Selectors 内置 XPath 和 CSS Selector 表达式机制
”
Selector有四个基本的方法,最常用的还是xpath:
- xpath(): 传入xpath表达式,返回该表达式所对应的所有节点的selector list列表
- extract(): 序列化该节点为字符串并返回list
- css(): 传入CSS表达式,返回该表达式所对应的所有节点的selector list列表,语法同 BeautifulSoup4
- re(): 根据传入的正则表达式对数据进行提取,返回字符串list列表
七、案例实战
本节,我将使用Scrapy爬取站酷数据作为示例
7.1 案例说明
既然已经初步了解了scrapy的工作流程以及原理,我们来做一个入门的小案例,爬取站酷首页推荐的item信息。如下图所示,一个小方框就是一个item信息。我们要提取每一个item的六个组成部分:
- imgLink(封面图片链接);
- title(标题);
- types(类型);
- vistor(人气);
- comment(评论数);
- likes(推荐人数)
然后只是一个页面的item,我们还要通过翻页实现批量数据采集。
7.2 文件配置
目录结构
在上一篇中我们说明了新建scrapy项目(zcool)和spider项目(zc),这里不再赘述,然后得到我们的目录结构如下图所示:
start.py文件
然后为了方便运行,在zcool目录下新建start文件。并进行初始化设置。
from scrapy import cmdline
cmdline.execute('scrapy crawl zc'.split())
settings.py文件
在这个文件里我们需要做几样设置
避免在程序运行的时候打印log日志信息
LOG_LEVEL = 'WARNING'
ROBOTSTXT_OBEY = False
添加请求头:
打开管道:
item.py文件
import scrapy
class ZcoolItem(scrapy.Item):
# define the fields for your item here like:
imgLink = scrapy.Field() # 封面图片链接
title = scrapy.Field() # 标题
types = scrapy.Field() # 类型
vistor = scrapy.Field() # 人气
comment = scrapy.Field() # 评论数
likes = scrapy.Field() # 推荐人数
7.3 页面数据提取
首先我们在站酷页面使用xpath-helper测试一下:
然后zc.py文件里面初步测试一下:
def parse(self, response):
divList = response.xpath('//div[@class="work-list-box"]/div')
print(len(divList))
运行结果如下图所示:
没有问题,然后我们对各种信息分别解析提取,
def parse(self, response):
divList = response.xpath('//div[@class="work-list-box"]/div')
for div in divList:
imgLink = div.xpath("./div[1]/a/img/@src").extract()[0] # 1.封面图片链接
... 2.title(标题);3 types(类型);4vistor(人气);5comment(评论数) ....
likes = div.xpath("./div[2]/p[3]/span[3]/@title").extract_first() # 6likes(推荐人数)
item = ZcoolItem(imgLink=imgLink,title=title,types=types,vistor=vistor,comment=comment,likes=likes)
yield item
解释: xpath提取数据方法:
S.N.方法 & 描述extract()返回的是符合要求的所有的数据,存在一个列表里。extract_first()返回的hrefs 列表里的第一个数据。get()和extract_first()方法返回的是一样的,都是列表里的第一个数据。getall()和extract()方法一样,返回的都是符合要求的所有的数据,存在一个列表里。
注意:
“
get() 、getall() 方法是新的方法,extract() 、extract_first()方法是旧的方法。extract() 、extract_first()方法取不到就返回None。get() 、getall() 方法取不到就raise一个错误。
”
item实例创建(yield上面一行代码)
这里我们之前在目录文件配置的item文件中已经进行了设置,对于数据存储,我们在爬虫文件中开头要导入这个类:
from zcool.items import ZcoolItem
然后使用yield返回数据。
为什么使用yield而不是return
不能使用return这个无容置疑,因为要翻页,使用return直接退出函数;而对于yield:在调用for的时候,函数内部不会立即执行,只是返回了一个生成器对象。在迭代的时候函数会开始执行,当在yield的时候,会返回当前值(i)。之后的这个函数会在循环中进行,直到没有下一个值。
7.4 翻页实现批量数据采集
通过上面的代码已经可以初步实现数据采集,只不过只有第一页的,如下图所示:
但是我们的目标是100个页面的批量数据采集,所以代码还需要修改。针对翻页这里介绍两种方式:
方式一:我们首先在页面中定位到下一页的按钮,如下图所示:
然后编写如下代码,在for循环完毕后。
next_href = response.xpath("//a[@class='laypage_next']/@href").extract_first()
if next_href:
next_url = response.urljoin(next_href)
print('*' * 60)
print(next_url)
print('*' * 60)
request = scrapy.Request(next_url)
yield request
scrapy.Request(): 把下一页的url传递给Request函数,进行翻页循环数据采集。
https://www.cnblogs.com/heymonkey/p/11818495.html # scrapy.Request()参考链接
注意方式一只有下一页按钮它的href对应属性值和下一页的url一致才行。
方式二:定义一个全局变量count = 0,每爬取一页数据,令其加一,构建新的url,再使用scrapy.Request() 发起请求。
如下图所示:
count = 1
class ZcSpider(scrapy.Spider):
name = 'zc'
allowed_domains = ['zcool.com.cn']
start_urls = ['https://www.zcool.com.cn/home?p=1#tab_anchor'] # 第一页的url
def parse(self, response):
global count
count += 1
for div in divList:
# ...xxx...
yield item
next_url = 'https://www.kuaikanmanhua.com/tag/0?state=1&sort=1&page={}'.format(count)
yield scrapy.Request(next_url)
这两种方式在实际案例中择机采用。
7.5 数据存储
数据存储是在pipline.py中进行的,代码如下:
from itemadapter import ItemAdapter
import csv
class ZcoolPipeline:
def __init__(self):
self.f = open('Zcool.csv','w',encoding='utf-8',newline='') # line1
self.file_name = ['imgLink', 'title','types','vistor','comment','likes'] # line2
self.writer = csv.DictWriter(self.f, fieldnames=self.file_name) # line3
self.writer.writeheader() # line4
def process_item(self, item, spider):
self.writer.writerow(dict(item)) # line5
print(item)
return item # line6
def close_spider(self,spider):
self.f.close()
解释:
- line1: 打开文件,指定方式为写,利用第3个参数把csv写数据时产生的空行消除
- line2: 设置文件第一行的字段名,注意要跟spider传过来的字典key名称相同
- line3: 指定文件的写入方式为csv字典写入,参数1为指定具体文件,参数2为指定字段名
- line4: 写入第一行字段名,因为只要写入一次,所以文件放在__init__里面
- line5: 写入spider传过来的具体数值,注意在spider文件中yield的item,是一个由类创建的实例对象,我们写入数据时,写入的是 字典,所以这里还要转化一下。
- line6: 写入完返回
7.6 程序运行
因为之前创建了start.py文件,并且对它就行了初始化设置,现在运行爬虫程序不需要在控制台中输入命令:
scrapy crawl zc(爬虫项目名)
直运行start.py文件:得到如下结果:
对应于页面:
打开csv文件如下图所示:(由于csv文件在word中乱码了,此处我是用Notepad++打开)
没有问题,数据采集完毕。
7.7. 总结
入门案例,需要细心,主要是基础知识的巩固,以便于为进阶学习做好准备。
相关推荐
- 一个基于.Net Core遵循Clean Architecture原则开源架构
-
今天给大家推荐一个遵循CleanArchitecture原则开源架构。项目简介这是基于Asp.netCore6开发的,遵循CleanArchitecture原则,可以高效、快速地构建基于Ra...
- AI写代码翻车无数次,我发现只要提前做好这3步,bug立减80%
-
写十万行全是bug之后终于找到方法了开发"提示词管理助手"新版本那会儿,我差点被bug整崩溃。刚开始两周,全靠AI改代码架构,结果十万行程序漏洞百出。本来以为AI说没问题就稳了,结果...
- OneCode低代码平台的事件驱动设计:架构解析与实践
-
引言:低代码平台的事件驱动范式在现代软件开发中,事件驱动架构(EDA)已成为构建灵活、松耦合系统的核心范式。OneCode低代码平台通过创新性的注解驱动设计,将事件驱动理念深度融入平台架构,实现了业务...
- 国内大厂AI插件评测:根据UI图生成Vue前端代码
-
在IDEA中安装大厂的AI插件,打开ruoyi增强项目:yudao-ui-admin-vue31.CodeBuddy插件登录腾讯的CodeBuddy后,大模型选择deepseek-v3,输入提示语:...
- AI+低代码技术揭秘(二):核心架构
-
本文档介绍了为VTJ低代码平台提供支持的基本架构组件,包括Engine编排层、Provider服务系统、数据模型和代码生成管道。有关UI组件库和widget系统的信息,请参阅UI...
- GitDiagram用AI把代码库变成可视化架构图
-
这是一个名为gitdiagram的开源工具,可将GitHub仓库实时转换为交互式架构图,帮助开发者快速理解代码结构。核心功能一键可视化:替换GitHubURL中的"hub...
- 30天自制操作系统:第六天:代码架构整理与中断处理
-
1.拆开bootpack.c文件。根据设计模式将对应的功能封装成独立的文件。2.初始化pic:pic(可编程中断控制器):在设计上,cpu单独只能处理一个中断。而pic是将8个中断信号集合成一个中断...
- AI写代码越帮越忙?2025年研究揭露惊人真相
-
近年来,AI工具如雨后春笋般涌现,许多人开始幻想程序员的未来就是“对着AI说几句话”,就能轻松写出完美的代码。然而,2025年的一项最新研究却颠覆了这一期待,揭示了一个令人意外的结果。研究邀请了16位...
- 一键理解开源项目:两个自动生成GitHub代码架构图与说明书工具
-
一、GitDiagram可以一键生成github代码仓库的架构图如果想要可视化github开源项目:https://github.com/luler/reflex_ai_fast,也可以直接把域名替换...
- 5分钟掌握 c# 网络通讯架构及代码示例
-
以下是C#网络通讯架构的核心要点及代码示例,按协议类型分类整理:一、TCP协议(可靠连接)1.同步通信//服务器端usingSystem.Net.Sockets;usingTcpListene...
- 从复杂到优雅:用建造者和责任链重塑代码架构
-
引用设计模式是软件开发中的重要工具,它为解决常见问题提供了标准化的解决方案,提高了代码的可维护性和可扩展性,提升了开发效率,促进了团队协作,提高了软件质量,并帮助开发者更好地适应需求变化。通过学习和应...
- 低代码开发当道,我还需要学习LangChain这些框架吗?| IT杂谈
-
专注LLM深度应用,关注我不迷路前两天有位兄弟问了个问题:当然我很能理解这位朋友的担忧:期望效率最大化,时间用在刀刃上,“不要重新发明轮子”嘛。铺天盖地的AI信息轰炸与概念炒作,很容易让人浮躁与迷茫。...
- 框架设计并不是简单粗暴地写代码,而是要先弄清逻辑
-
3.框架设计3.框架设计本节我们要开发一个UI框架,底层以白鹭引擎为例。框架设计的第一步并不是直接撸代码,而是先想清楚设计思想,抽象。一个一个的UI窗口是独立的吗?不是的,...
- 大佬用 Avalonia 框架开发的 C# 代码 IDE
-
AvalonStudioAvalonStudio是一个开源的跨平台的开发编辑器(IDE),AvalonStudio的目标是成为一个功能齐全,并且可以让开发者快速使用的IDE,提高开发的生产力。A...
- 轻量级框架Lagent 仅需20行代码即可构建自己的智能代理
-
站长之家(ChinaZ.com)8月30日消息:Lagent是一个专注于基于LLM模型的代理开发的轻量级框架。它的设计旨在简化和提高这种模型下代理的开发效率。LLM模型是一种强大的工具,可以...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- 框架图 (58)
- flask框架 (53)
- quartz框架 (51)
- abp框架 (47)
- springmvc框架 (49)
- 分布式事务框架 (65)
- scrapy框架 (56)
- shiro框架 (61)
- 定时任务框架 (56)
- java日志框架 (61)
- mfc框架 (52)
- abb框架断路器 (48)
- beego框架 (52)
- java框架spring (58)
- grpc框架 (65)
- tornado框架 (48)
- 前端框架bootstrap (54)
- orm框架有哪些 (51)
- 知识框架图 (52)
- ppt框架 (55)
- 框架图模板 (59)
- 内联框架 (52)
- cad怎么画框架 (58)
- ssm框架实现登录注册 (49)
- oracle字符串长度 (48)