开源DataX集成可视化项目Datax-Web的使用
ccwgpt 2025-01-08 11:54 43 浏览 0 评论
上一篇文章我们已经搭建好了 Datax-Web 后台,这篇文章我们具体讲一下如何通过Datax-Web来配置,同步MySQL数据库。
目标
MySql数据库全量同步
1.执行器配置
1、"调度中心OnLine:"右侧显示在线的"调度中心"列表, 任务执行结束后, 将会以failover的模式进行回调调度中心通知执行结果, 避免回调的单点风险;
2、“执行器列表” 中显示在线的执行器列表, 可通过"OnLine 机器"查看对应执行器的集群机器;
1、AppName: (与datax-executor中application.yml的datax.job.executor.appname保持一致)
每个执行器集群的唯一标示AppName, 执行器会周期性以AppName为对象进行自动注册。可通过该配置自动发现注册成功的执行器, 供任务调度时使用;
2、名称: 执行器的名称, 因为AppName限制字母数字等组成,可读性不强, 名称为了提高执行器的可读性;
3、排序: 执行器的排序, 系统中需要执行器的地方,如任务新增, 将会按照该排序读取可用的执行器列表;
4、注册方式:调度中心获取执行器地址的方式;
自动注册:执行器自动进行执行器注册,调度中心通过底层注册表可以动态发现执行器机器地址;
手动录入:人工手动录入执行器的地址信息,多地址逗号分隔,供调度中心使用;
5、机器地址:"注册方式"为"手动录入"时有效,支持人工维护执行器的地址信息;
2.创建数据源
数据源管理—>添加
如图填写MySQL的账号信息,点击测试连接,无误之后确认。
第四步使用
3.创建任务模版
第四步使用
4. 构建JSON脚本
1.任务批量构建
步骤一,步骤二,选择第二步中创建的数据源,JSON构建目前支持的数据源有hive,mysql,oracle,postgresql,sqlserver,hbase,mongodb,clickhouse 其它数据源的JSON构建正在开发中,暂时需要手动编写。
任务管理—>任务批量构建—>选择数据库源
2.字段映射
3.批量创建任务
手动执行一次
4.启动任务
查看日志
报错
2023-03-28 16:41:14 [JobThread.run-130] <br>----------- datax-web job execute start -----------<br>----------- Param:
2023-03-28 16:41:14 [BuildCommand.buildDataXParam-100] ------------------Command parameters:
2023-03-28 16:41:14 [ExecutorJobHandler.execute-57] ------------------DataX process id: 29802
2023-03-28 16:41:14 [AnalysisStatistics.analysisStatisticsLog-53] File "/data/datax/bin/datax.py", line 114
2023-03-28 16:41:14 [AnalysisStatistics.analysisStatisticsLog-53] print readerRef
2023-03-28 16:41:14 [AnalysisStatistics.analysisStatisticsLog-53] ^
2023-03-28 16:41:14 [AnalysisStatistics.analysisStatisticsLog-53] SyntaxError: Missing parentheses in call to 'print'. Did you mean print(readerRef)?
2023-03-28 16:41:14 [JobThread.run-165] <br>----------- datax-web job execute end(finish) -----------<br>----------- ReturnT:ReturnT [code=500, msg=command exit value(1) is failed, content=null]
2023-03-28 16:41:14 [ProcessCallbackThread.callbackLog-186] <br>----------- datax-web job callback finish.
2023-03-28 16:41:14 [TriggerCallbackThread.callbackLog-186] <br>----------- datax-web job callback finish.
经过查询是本机装了多版本的python
[root@node3 bin]# whereis python
python: /usr/bin/python /usr/bin/python2.7 /usr/bin/python3.6 /usr/bin/python3.6m /usr/lib/python2.7 /usr/lib/python3.6 /usr/lib64/python2.7 /usr/lib64/python3.6 /etc/python /usr/include/python2.7 /usr/include/python3.6m /root/anaconda3/bin/python /root/anaconda3/bin/python3.9 /root/anaconda3/bin/python3.9-config /usr/share/man/man1/python.1.gz
[root@node3 bin]# python -V
Python 3.9.13
[root@node3 bin]# /usr/bin/python -V
Python 2.7.5
经过修复使Python改为2.7再执行任务
[root@node3 ~]# python -V
Python 2.7.5
还有一种修复方式是
Python (2.x) (支持Python3需要修改替换datax/bin下面的三个python文件,替换文件在doc/datax-web/datax-python3下) 必选,主要用于调度执行底层DataX的启动脚本,默认的方式是以Java子进程方式执行DataX,用户可以选择以Python方式来做自定义的改造
5.查看任务
查看日志:
再用Navicat 查看目标库中数据是否一致。
DataX-Web增量配置说明
一、根据日期进行增量数据抽取
1.页面任务配置
打开菜单任务管理页面,选择添加任务
按下图中5个步骤进行配置
- 1.任务类型选DataX任务
- 2.辅助参数选择时间自增
- 3.增量开始时间选择,即sql中查询时间的开始时间,用户使用此选项方便第一次的全量同步。第一次同步完成后,该时间被更新为上一次的任务触发时间,任务失败不更新。
- 4.增量时间字段,-DlastTime=’%s’ -DcurrentTime=’%s’ 先来解析下这段字符串
1.-D是DataX参数的标识符,必配
2.-D后面的lastTime和currentTime是DataX json中where条件的时间字段标识符,必须和json中的变量名称保持一致
3.='%s'是项目用来去替换时间的占位符,比配并且格式要完全一致
4.注意-DlastTime='%s'和-DcurrentTime='%s'中间有一个空格,空格必须保留并且是一个空格
- 5.时间格式,可以选择自己数据库中时间的格式,也可以通过json中配置sql时间转换函数来处理
注意,注意,注意: 配置一定要仔细看文档(后面我们也会对这块配置进行优化,避免大家犯错)
2.JSON配置
datax.json
{
"job": {
"setting": {
"speed": {
"channel": 16
}
},
"content": [
{
"reader": {
"name": "mysqlreader",
"parameter": {
"splitPk": "id",
"username": "root",
"password": "root",
"column": [
"*"
],
"connection": [
{
"jdbcUrl": [
"jdbc:mysql://localhost:3306/test?characterEncoding=utf8"
],
"querySql": [
"select * from test_list where operationDate >= FROM_UNIXTIME(${lastTime}) and operationDate < FROM_UNIXTIME(${currentTime})"
]
}
]
}
},
"writer": {
"name": "mysqlwriter",
"parameter": {
"username": "root",
"password": "123456",
"column": [
"*"
],
"batchSize": "4096",
"connection": [
{
"jdbcUrl": "jdbc:mysql://localhost:3307/test?characterEncoding=utf8",
"table": [
"test_list"
]
}
]
}
}
}
]
}
}
querySql解析
select * from test_list where operationDate >= ${lastTime} and operationDate < ${currentTime}
- 1.此处的关键点在{lastTime},{currentTime},${}是DataX动态参数的固定格式,lastTime,currentTime就是我们页面配置中 -DlastTime=’%s’ -DcurrentTime=’%s’中的lastTime,currentTime,注意字段一定要一致。
- 2.如果任务配置页面,时间类型选择为时间戳但是数据库时间格式不是时间戳,例如是:2019-11-26 11:40:57 此时可以用FROM_UNIXTIME(${lastTime})进行转换。
select * from test_list where operationDate >= FROM_UNIXTIME(${lastTime}) and operationDate < FROM_UNIXTIME(${currentTime})
二、根据自增Id进行增量数据抽取
1.页面任务配置
打开菜单任务管理页面,选择添加任务
按下图中4个步骤进行配置
- 1.任务类型选DataX任务
- 2.辅助参数选择主键自增
- 3.增量主键开始ID选择,即sql中查询ID的开始ID,用户使用此选项方便第一次的全量同步。第一次同步完成后,该ID被更新为上一次的任务触发时最大的ID,任务失败不更新。
- 4.增量时间字段,-DstartId=’%s’ -DendId=’%s’ 先来解析下这段字符串
1.-D是DataX参数的标识符,必配
2.-D后面的startId和endId是DataX json中where条件的id字段标识符,必须和json中的变量名称保持一致,endId是任务在每次执行时获取当前表maxId,也是下一次任务的startId
3.='%s'是项目用来去替换时间的占位符,比配并且格式要完全一致
4.注意-DstartId='%s'和-DendId='%s' 中间有一个空格,空格必须保留并且是一个空格
5.reader数据源,选择任务同步的读数据源
6.配置reader数据源中需要同步数据的表名及该表的主键
注意,注意,注意: 一定要仔细看文档(后续会对这块配置进行优化,避免大家犯错)
2.JSON配置
datax.json
{
"job": {
"setting": {
"speed": {
"channel": 3,
"byte": 1048576
},
"errorLimit": {
"record": 0,
"percentage": 0.02
}
},
"content": [
{
"reader": {
"name": "mysqlreader",
"parameter": {
"username": "yRjwDFuoPKlqya9h9H2Amg==",
"password": "yRjwDFuoPKlqya9h9H2Amg==",
"splitPk": "",
"connection": [
{
"querySql": [
"select * from job_log where id>= ${startId} and id< ${endId}"
],
"jdbcUrl": [
"jdbc:mysql://localhost:3306/datax_web"
]
}
]
}
},
"writer": {
"name": "mysqlwriter",
"parameter": {
"username": "mCFD+p1IMsa0rHicbQohcA==",
"password": "PhYxJmA/nuBJD1OxKTRzZH8sxuRddOv83hdqDOVR+i0=",
"column": [
"`id`",
"`job_group`",
"`job_id`",
"`job_desc`",
"`executor_address`",
"`executor_handler`",
"`executor_param`",
"`executor_sharding_param`",
"`executor_fail_retry_count`",
"`trigger_time`",
"`trigger_code`",
"`trigger_msg`",
"`handle_time`",
"`handle_code`",
"`handle_msg`",
"`alarm_status`",
"`process_id`",
"`max_id`"
],
"connection": [
{
"table": [
"job_log"
],
"jdbcUrl": "jdbc:mysql://47.98.125.243:3306/datax_web"
}
]
}
}
}
]
}
}
querySql解析
select * from job_log where id>= ${startId} and id< ${endId}
- 1.此处的关键点在{startId},{endId},${}是DataX动态参数的固定格式,startId,endId就是我们页面配置中 -DstartId=’%s’ -DendId=’%s’中的startId,endId,注意字段一定要一致。
三、JVM启动参数配置
此选择为非必选,可以配置DataX启动时JVM的参数,具体配置不做详解。
JVM启动参数拼接结果为:-j "-Xms2G -Xmx2G"
参考
https://github.com/WeiYe-Jing/datax-web
https://github.com/WeiYe-Jing/datax-web/blob/master/doc/datax-web/increment-desc.md
相关推荐
- 腾讯开源框架TarsCpp-rpc设计分析-server(二)
-
2Tars协议2.1是什么借用官方说法:TARS编码协议是一种数据编解码规则,它将整形、枚举值、字符串、序列、字典、自定义结构体等数据类型按照一定的规则编码到二进制数据流中。对端接收到二进制数据流...
- 微服务调用为什么用RPC框架,http不更简单吗?
-
简单点,HTTP是协议,RPC是概念!实现RPC可以基于HTTP协议(Feign),TCP协议(Netty),RMI协议(Soap),WebService(XML—RPC)框架。传输过程中,也因为序列...
- go-zero:开箱即用的微服务框架(gin框架微服务)
-
go-zero是一个集成了各种工程实践的Web和rpc框架,它的弹性设计保障了大并发服务端的稳定性,并且已经经过了充分的实战检验。go-zero在设计时遵循了“工具大于约定和文档”的理...
- SOFARPC :高性能、高扩展性、生产级的 Java RPC 框架
-
#暑期创作大赛#SOFARPC是一个高性能、高扩展性、生产级的JavaRPC框架。在蚂蚁金服,SOFARPC已经使用了十多年,已经发展了五代。SOFARPC致力于简化应用程序之间的RPC...
- 自研分布式高性能RPC框架及服务注册中心ApiRegistry实践笔记
-
痛点1.bsf底层依赖springcloud,影响bsf更新springboot新版本和整体最新技术版本升级。2.eureka已经闭源,且框架设计较重,同时引入eureka会自行引入较多sprin...
- Rust语言从入门到精通系列 - Tonic RPC框架入门实战
-
Rust语言是一种系统级语言,被誉为“没有丧失性能的安全语言”。Rust语言的优势在于其内存安全机制,在编译时就能保证程序的内存安全。Tonic模块是Rust语言的一个RPC(RemoteProce...
- 腾讯开源框架TarsCpp-rpc设计分析-client(一)
-
前言Tars是腾讯开源的微服务平台,包含了一个高性能的rpc框架和服务治理平台,TarsCpp是其C++版本。对于以C++为主要开发语言,同时还想深入了解rpc和微服务框架具体实现的同学来说,Tars...
- 设计了一款TPS百万级别的分布式、高性能、可扩展的RPC框架
-
为啥要开发RPC框架事情是这样的,在开发这个RPC框架之前,我花费了不少时间算是对Dubbo框架彻底研究透彻了。冰河在撸透了Dubbo2.x和Dubbo3.x的源码之后,本来想给大家写一个Dubbo源...
- rpc框架使用教程,超级稳定好用,大厂都在使用
-
rpc是什么远程调用协议如何使用导入依赖<dependency><groupId>org.apache.dubbo</groupId><art...
- Layui 框架实战:动态加载 Select 与二级联动全解析
-
在现代Web开发中,下拉选择框(Select)是用户输入数据时不可或缺的组件。很多时候,我们需要的选项并非静态写死在HTML中,而是需要根据业务逻辑从后端动态获取。更有甚者,我们可能需要实现“...
- 15个能为你节省数百小时的前端设计神器,从UI库到文档生成
-
无论你是刚开始开发之旅的新手,还是疲于应付生产期限的资深程序员,有一个真理始终不变:正确的工具能彻底改变你的工作流程。多年来,我测试了数百个开发工具——有些实用,大多数平庸。但有一批免费网站经受住了时...
- Layui与WinForm通用权限管理系统全解析
-
嘿,小伙伴们,今天咱们来聊聊Layui和WinForm这两个框架在通用权限管理系统中的应用。别担心,我会尽量用简单易懂的语言来讲解,保证让大家都能跟上节奏!首先说说Layui。Layui是一个前端UI...
- 纯Python构建精美UI!MonsterUI让前端开发效率飙升
-
“无需CSS知识,告别类名记忆,11行代码实现专业级卡片组件”在传统Web开发中,构建美观界面需要同时掌握HTML、CSS、JavaScript三剑客,开发者不得不在多种语言间频繁切换。即使使用Boo...
- WebTUI:将终端用户界面(TUI)之美带到浏览器的CSS库
-
在当今Web技术飞速发展的时代,界面设计愈发复杂多样。然而,随着现代化工具的广泛使用,一些开发者开始回归极简风格,追求一种简洁而富有韵味的设计。WebTUI正是这样一款CSS库,它将经典的终...
- 人教版二年级下册生字描红汇总(拼音+笔顺+描红),可打印!
-
可定制内容,评论区留言。本次整理的为人教版二年级下册所有生字,共计300个;写字是小学阶段一项重要的基本功训练,把汉字写得正确、工整、美观,可以提高运用汉字这一交际工具的准确性和效率。对小学生进行写字...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- 腾讯开源框架TarsCpp-rpc设计分析-server(二)
- 微服务调用为什么用RPC框架,http不更简单吗?
- go-zero:开箱即用的微服务框架(gin框架微服务)
- SOFARPC :高性能、高扩展性、生产级的 Java RPC 框架
- 自研分布式高性能RPC框架及服务注册中心ApiRegistry实践笔记
- Rust语言从入门到精通系列 - Tonic RPC框架入门实战
- 腾讯开源框架TarsCpp-rpc设计分析-client(一)
- 设计了一款TPS百万级别的分布式、高性能、可扩展的RPC框架
- rpc框架使用教程,超级稳定好用,大厂都在使用
- Layui 框架实战:动态加载 Select 与二级联动全解析
- 标签列表
-
- 框架图 (58)
- flask框架 (53)
- quartz框架 (51)
- abp框架 (47)
- jpa框架 (47)
- springmvc框架 (49)
- 分布式事务框架 (65)
- scrapy框架 (56)
- shiro框架 (61)
- 定时任务框架 (56)
- java日志框架 (61)
- JAVA集合框架 (47)
- mfc框架 (52)
- abb框架断路器 (48)
- ui自动化框架 (47)
- beego框架 (52)
- java框架spring (58)
- grpc框架 (65)
- tornado框架 (48)
- 前端框架bootstrap (54)
- ppt框架 (48)
- 内联框架 (52)
- cad怎么画框架 (58)
- ssm框架实现登录注册 (49)
- oracle字符串长度 (48)