百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

自动同步整个 MySQL 数据库以进行数据分析

ccwgpt 2025-03-05 14:01 111 浏览 0 评论


Flink-Doris-Connector 1.4.0 允许用户一步将包含数千个表的整个数据库(MySQLOracle )摄取到Apache Doris(一种实时分析数据库)中。

Connector 内置 Flink CDC,可以直接将上游源的表 schema 和数据同步到 Apache Doris,这意味着用户不再需要在 Doris 中编写 DataStream 程序或预先创建映射表。

当 Flink 作业启动时,Connector 会自动检查源数据库和 Apache Doris 之间的数据等效性。如果数据源包含 Doris 中不存在的表,Connector 会自动在 Doris 中创建相同的表,并利用 Flink 的侧输出来方便一次摄取多个表;如果源中发生架构更改,它将自动获取 DDL 语句并在 Doris 中进行相同的架构更改。

快速开始

对于MySQL

下载 JAR 文件:
https://github.com/apache/doris-flink-connector/releases/tag/1.4.0

行家:


  org.apache.doris
  flink-doris-connector-1.15
  
  
  1.4.0

对于甲骨文

下载 JAR 文件:Flink 1.15、Flink 1.16、Flink 1.17

如何使用它

例如,要将整个 MySQL 数据库引入mysql_dbDoris(MySQL 表名以tbl或开头test),只需执行以下命令(无需提前在 Doris 中创建表):

/bin/flink run \
    -Dexecution.checkpointing.interval=10s \
    -Dparallelism.default=1 \
    -c org.apache.doris.flink.tools.cdc.CdcTools \
    lib/flink-doris-connector-1.16-1.4.0.jar \
    mysql-sync-database \
    --database test_db \
    --mysql-conf hostname=127.0.0.1 \
    --mysql-conf username=root \
    --mysql-conf password=123456 \
    --mysql-conf database-name=mysql_db \
    --including-tables "tbl|test.*" \
    --sink-conf fenodes=127.0.0.1:8030 \
    --sink-conf username=root \
    --sink-conf password=123456 \
    --sink-conf jdbc-url=jdbc:mysql://127.0.0.1:9030 \
    --sink-conf sink.label-prefix=label1 \
    --table-conf replication_num=1 

摄取Oracle数据库:请参考示例代码。

表现如何

当涉及到同步整个数据库(包含数百甚至数千个表,活动或不活动)时,大多数用户希望在几秒钟内完成。因此我们测试了连接器,看看它是否符合要求:

  • 1000 个 MySQL 表,每个表有 100 个字段。所有表都是活动的(这意味着它们不断更新,每次数据写入涉及一百多行)
  • Flink作业检查点:10s

经过压力测试,系统表现出较高的稳定性,主要指标如下:





根据早期采用者的反馈,该Connector在生产环境中的万表数据库同步中也提供了高性能和系统稳定性。这证明Apache Doris和Flink CDC的结合能够高效可靠地进行大规模数据同步。

它如何使数据工程师受益

工程师不再需要担心表创建或表模式维护,从而节省了数天繁琐且容易出错的工作。之前在Flink CDC中,需要为每个表创建一个Flink作业,并在源端建立日志解析链路,但现在通过全库摄取,源数据库的资源消耗大大减少。也是增量更新和全量更新的统一解决方案。

其他特性

1.连接维度表和事实表

常见的做法是将维度表放在Doris中,通过Flink的实时流进行Join查询。Flink-Doris-Connector 1.4.0基于Flink 的 Async I/O实现了异步 Lookup Join,因此 Flink 实时流不会因为查询而阻塞。此外,连接器还允许您将多个查询合并为一个大查询,并将其立即发送给 Doris 进行处理。这提高了此类连接查询的效率和吞吐量。

2.节俭 SDK

我们在 Connector 中引入了 Thrift-Service SDK,用户不再需要使用 Thrift 插件或在编译时配置 Thrift 环境。这使得编译过程变得更加简单。

3. 按需流加载

数据同步过程中,当没有新的数据摄入时,不会发出Stream Load请求。这样可以避免不必要的集群资源消耗。

4. 后端节点轮询

对于数据摄取,Doris 调用前端节点获取后端节点列表,并随机选择一个发起摄取请求。该后端节点将是协调器。Flink-Doris-Connector 1.4.0 允许用户启用轮询机制,即在每个 Flink 检查点都有不同的后端节点作为 Coordinator,以避免单个后端节点长期承受过大的压力。

5. 支持更多数据类型

除了常见的数据类型外,Flink-Doris-Connector 1.4.0 还支持 Doris 中的
DecimalV3/DateV2/DateTimev2/Array/JSON。

用法示例

从Apache Doris读:

您可以通过DataStream或FlinkSQL(有界流)从Doris读取数据。支持谓词下推。

CREATE TABLE flink_doris_source (
    name STRING,
    age INT,
    score DECIMAL(5,2)
    ) 
    WITH (
      'connector' = 'doris',
      'fenodes' = '127.0.0.1:8030',
      'table.identifier' = 'database.table',
      'username' = 'root',
      'password' = 'password',
      'doris.filter.query' = 'age=18'
);

SELECT * FROM flink_doris_source;

连接维度表和事实表

CREATE TABLE fact_table (
  `id` BIGINT,
  `name` STRING,
  `city` STRING,
  `process_time` as proctime()
) WITH (
  'connector' = 'kafka',
  ...
);

create table dim_city(
  `city` STRING,
  `level` INT ,
  `province` STRING,
  `country` STRING
) WITH (
  'connector' = 'doris',
  'fenodes' = '127.0.0.1:8030',
  'jdbc-url' = 'jdbc:mysql://127.0.0.1:9030',
  'lookup.jdbc.async' = 'true',
  'table.identifier' = 'dim.dim_city',
  'username' = 'root',
  'password' = ''
);

SELECT a.id, a.name, a.city, c.province, c.country,c.level 
FROM fact_table a
LEFT JOIN dim_city FOR SYSTEM_TIME AS OF a.process_time AS c
ON a.city = c.city

写给Apache Doris

CREATE TABLE doris_sink (
    name STRING,
    age INT,
    score DECIMAL(5,2)
    ) 
    WITH (
      'connector' = 'doris',
      'fenodes' = '127.0.0.1:8030',
      'table.identifier' = 'database.table',
      'username' = 'root',
      'password' = '',
      'sink.label-prefix' = 'doris_label',
      //json write in
      'sink.properties.format' = 'json',
      'sink.properties.read_json_by_line' = 'true'
);

相关推荐

一个基于.Net Core遵循Clean Architecture原则开源架构

今天给大家推荐一个遵循CleanArchitecture原则开源架构。项目简介这是基于Asp.netCore6开发的,遵循CleanArchitecture原则,可以高效、快速地构建基于Ra...

AI写代码翻车无数次,我发现只要提前做好这3步,bug立减80%

写十万行全是bug之后终于找到方法了开发"提示词管理助手"新版本那会儿,我差点被bug整崩溃。刚开始两周,全靠AI改代码架构,结果十万行程序漏洞百出。本来以为AI说没问题就稳了,结果...

OneCode低代码平台的事件驱动设计:架构解析与实践

引言:低代码平台的事件驱动范式在现代软件开发中,事件驱动架构(EDA)已成为构建灵活、松耦合系统的核心范式。OneCode低代码平台通过创新性的注解驱动设计,将事件驱动理念深度融入平台架构,实现了业务...

国内大厂AI插件评测:根据UI图生成Vue前端代码

在IDEA中安装大厂的AI插件,打开ruoyi增强项目:yudao-ui-admin-vue31.CodeBuddy插件登录腾讯的CodeBuddy后,大模型选择deepseek-v3,输入提示语:...

AI+低代码技术揭秘(二):核心架构

本文档介绍了为VTJ低代码平台提供支持的基本架构组件,包括Engine编排层、Provider服务系统、数据模型和代码生成管道。有关UI组件库和widget系统的信息,请参阅UI...

GitDiagram用AI把代码库变成可视化架构图

这是一个名为gitdiagram的开源工具,可将GitHub仓库实时转换为交互式架构图,帮助开发者快速理解代码结构。核心功能一键可视化:替换GitHubURL中的"hub...

30天自制操作系统:第六天:代码架构整理与中断处理

1.拆开bootpack.c文件。根据设计模式将对应的功能封装成独立的文件。2.初始化pic:pic(可编程中断控制器):在设计上,cpu单独只能处理一个中断。而pic是将8个中断信号集合成一个中断...

AI写代码越帮越忙?2025年研究揭露惊人真相

近年来,AI工具如雨后春笋般涌现,许多人开始幻想程序员的未来就是“对着AI说几句话”,就能轻松写出完美的代码。然而,2025年的一项最新研究却颠覆了这一期待,揭示了一个令人意外的结果。研究邀请了16位...

一键理解开源项目:两个自动生成GitHub代码架构图与说明书工具

一、GitDiagram可以一键生成github代码仓库的架构图如果想要可视化github开源项目:https://github.com/luler/reflex_ai_fast,也可以直接把域名替换...

5分钟掌握 c# 网络通讯架构及代码示例

以下是C#网络通讯架构的核心要点及代码示例,按协议类型分类整理:一、TCP协议(可靠连接)1.同步通信//服务器端usingSystem.Net.Sockets;usingTcpListene...

从复杂到优雅:用建造者和责任链重塑代码架构

引用设计模式是软件开发中的重要工具,它为解决常见问题提供了标准化的解决方案,提高了代码的可维护性和可扩展性,提升了开发效率,促进了团队协作,提高了软件质量,并帮助开发者更好地适应需求变化。通过学习和应...

低代码开发当道,我还需要学习LangChain这些框架吗?| IT杂谈

专注LLM深度应用,关注我不迷路前两天有位兄弟问了个问题:当然我很能理解这位朋友的担忧:期望效率最大化,时间用在刀刃上,“不要重新发明轮子”嘛。铺天盖地的AI信息轰炸与概念炒作,很容易让人浮躁与迷茫。...

框架设计并不是简单粗暴地写代码,而是要先弄清逻辑

3.框架设计3.框架设计本节我们要开发一个UI框架,底层以白鹭引擎为例。框架设计的第一步并不是直接撸代码,而是先想清楚设计思想,抽象。一个一个的UI窗口是独立的吗?不是的,...

大佬用 Avalonia 框架开发的 C# 代码 IDE

AvalonStudioAvalonStudio是一个开源的跨平台的开发编辑器(IDE),AvalonStudio的目标是成为一个功能齐全,并且可以让开发者快速使用的IDE,提高开发的生产力。A...

轻量级框架Lagent 仅需20行代码即可构建自己的智能代理

站长之家(ChinaZ.com)8月30日消息:Lagent是一个专注于基于LLM模型的代理开发的轻量级框架。它的设计旨在简化和提高这种模型下代理的开发效率。LLM模型是一种强大的工具,可以...

取消回复欢迎 发表评论: