谷歌最强开源模型Gemma 2发布!270亿参数奇袭Llama 3
ccwgpt 2025-03-23 17:49 15 浏览 0 评论
作者 | ZeR0
编辑 | 漠影
智东西6月28日报道,昨晚,谷歌在I/O Connect大会上放大招,公布其新一代最强开源模型——Gemma 2。
Gemma 2有90亿(9B)和270亿(27B)两种参数规模可用。27B模型训练了13T tokens,9B是8T tokens,都拥有8192上下文窗口,可在Google AI Studio中使用。26亿参数(2.6B)模型将很快发布,小到可以在手机本地运行。
在盲测大语言模型竞技场LMSYS Chatbot Arena中,270亿参数的Gemma 2指令微调模型击败了拥有700亿参数的Llama 3,并超过Nemotron 4 340B、Claude 3 Sonnet、Command R+、Qwen 72B等模型,在所有开源权重的模型中位列第一;9B模型则是当前15B以下参数的模型中成绩最好的。
谷歌在今年早些时候推出轻量级先进开源模型Gemma,只有2B和7B参数版本,下载量超过1000万次。Gemma 2涵盖从20亿到270亿参数,比第一代性能更高、推理效率更高,并且显著改进安全性。这是该系列模型迈出的一大步。
270亿参数的Gemma 2提供了与两倍以上参数的模型竞争的替代方案,提供了直到去年12月才可能实现的性能,而且可以在单个英伟达A100/H100 Tensor Core GPU或TPU主机上以全精度高效运行推理,大大降低了部署成本。
在Hugging Face的基准上,谷歌将Gemma 2 27B与具有类似尺寸的Qwen1.5 32B进行了比较,还报告了Llama 3 70B的性能。Gemma 2 27B的尺寸只有Llama 3 70B的40%,训练数据少到Llama 3 70B的2/3。结果显示,Gemma 2 27B优于Qwen1.5 32B,比Llama 3 70B低几个百分点。
一、重新设计架构,Gemma 2有三大特点
Gemma 2的技术报告共15页,介绍了其架构的多项技术改进,包括交替使用局部-全局注意力机制和分组查询注意力,还使用知识蒸馏而不是下一个token预测来帮助训练较小的2B和9B模型。
▲Gemma模型的参数量
2.6B模型在一个TPUv5e集群的2x16x16配置上训练,总共用了512张芯片。9B模型在TPUv4集群的8x16x32配置上训练,总共4096张芯片。27B模型在TPUv5p集群的8x24x32配置上训练,总共用了6144张芯片。
▲用切分训练基础设施
针对更高的性能和推理效率,谷歌在重新设计的架构上构建了Gemma 2。该模型采用与Gemma 1.1相似的算法配方,但用了更多的teacher监督并执行了模型合并。在编程、数学、推理、安全等能力上,Gemma 2都比1.1版本提升显著。
▲主要模型参数及设计选择的概述
结果,Gemma 2模型在其规模上提供了最佳性能,甚至提供了与大2-3倍的模型竞争的替代方案。以下是其突出的特点:
(1)卓越性能:Gemma 2 27B在其同类大小中提供了最佳性能,甚至提供了与两倍以上大小的模型竞争的替代方案。Gemma 2 9B模型也提供了领先的性能,超过了Llama 3 8B和其他同类大小的开源模型。
谷歌在各种基准上比较2.6B、9B及27B模型,报告了可以与Llama 3进行比较的8个基准测试的平均性能,以及所有基准测试的平均性能。Llama 3 8B的数据来自HuggingFace leaderboard或其博客。
在MMLU上,9B模型得分为71.3,27B模型为75.2;在AGIEval上,9B模型得分52.8,27B模型得分55.1;在HumanEval上,9B模型得分40.2,27B模型得分51.8。
(2)无与伦比的效率和成本节省:Gemma 2 27B模型设计用于在单个谷歌云TPU主机、英伟达A100 80GB Tensor Core GPU或H100 Tensor Core GPU上高效运行全精度推理,在保持高性能的同时显著降低成本。这使得AI部署更加易于访问和经济实惠。
(3)跨硬件的快速推理:Gemma 2经过优化,可以在各种硬件上以令人难以置信的速度运行,硬件从功能强大的游戏笔记本电脑和高端台式机到基于云的设置。在Google AI Studio中以全精度试用Gemma 2,在CPU上使用Gemma.cpp的量化版本解锁本地性能,或在家用计算机上通过Hugging Face Transformers在英伟达RTX或GeForce RTX上试用。
二、支持商业化,兼容广泛框架,方便部署
Gemma 2为开发者和研究人员构建,其设计更容易集成到工作流程中:
(1)开放且可访问:与原始Gemma模型一样,Gemma 2也是根据谷歌具有商业友好的Gemma许可发布的,允许开发人员和研究人员分享和商业化他们的创新。
(2)广泛的框架兼容性:Gemma 2兼容主要的AI框架,如Hugging Face Transformers,以及通过原生Keras 3.0、vLLM、Gemma.cpp、Llama.cpp和Ollama的JAX、PyTorch和TensorFlow。此外,Gemma优化了英伟达TensorRT-LLM以在英伟达加速基础设施上运行或作为英伟达NIM推理微服务运行。用户可以使用Keras和Hugging Face进行微调。谷歌正在积极努力实现更多参数高效的微调选项。
(3)轻松部署:从下个月开始,谷歌云客户将能轻松在Vertex AI上部署和管理Gemma 2。
新的Gemma Cookbook是一个包含实用示例和指南的集合,引导用户构建自己的应用程序并为特定任务微调Gemma 2模型。
三、提供负责任的AI开发资源,严格测试评估模型安全性
在负责任的AI开发方面,谷歌提供负责任地构建和部署AI所需的资源,包括负责任的生成式AI工具包。最近开源的LLM Comparator帮助开发者和研究人员深入评估语言模型。
即日起,用户可使用配套的Python库与自己的模型和数据进行比较评估,并在应用程序中可视化结果。此外,谷歌正在积极致力于开源文本水印技术SynthID,用于Gemma模型。
在训练Gemma 2时,谷歌遵循内部安全流程,过滤了训练前的数据,并针对一套全面的指标进行了严格的测试和评估,以识别和减轻潜在的偏见和风险。谷歌在与安全性和代表性危害相关的大量公共基准上公布了其结果。
▲Gemma 2 IT模型和Gemma 1.1 IT模型的安全学术基准结果
结语:大模型研发趋于实用主义
谷歌Gemma 2的研究进展反映了当前大模型研究趋势,即探索用更轻量级的、更实用的模型来实现更强的性能,并确保易部署,以更好地满足不同的用户需求。
谷歌为开发者和研究人员提供了使用这些模型的多种途径。Gemma 2现可在Google AI Studio中使用,可在没有硬件要求的情况下测试其270亿参数的全部性能,也可以从Kaggle和Hugging Face Models下载Gemma 2的模型权重,Vertex AI Model Garden即将推出。
通过Gemma 2,谷歌证明了蒸馏是训练此类模型的有效方法,基于输出概率的训练能够比纯粹的下一个token预测产生更多的效果。模型仍存在局限性,需要未来研究来持续优化事实性、对抗性攻击的鲁棒性以及推理和一致性。
为支持研究和开发,Gemma 2还可通过Kaggle免费获得,或通过Colab笔记本的免费层获得。首次使用谷歌云服务的用户可能有资格获得300美元的积分。学术研究人员可以申请Gemma 2学术研究计划,以获得谷歌云积分,加速对Gemma 2的研究。申请截止日期为8月9日。
来源:谷歌DeepMind
相关推荐
- 迈向群体智能 | 智源发布首个跨本体具身大小脑协作框架
-
允中发自凹非寺量子位|公众号QbitAI3月29日,智源研究院在2025中关村论坛“未来人工智能先锋论坛”上发布首个跨本体具身大小脑协作框架RoboOS与开源具身大脑RoboBrain,可实...
- 大模型对接微信个人号,极空间部署AstrBot机器人,万事不求百度
-
「亲爱的粉丝朋友们好啊!今天熊猫又来介绍好玩有趣的Docker项目了,喜欢的记得点个关注哦!」引言前两天熊猫发过一篇关于如何在极空间部署AstrBot并对接QQ消息平台的文章,不过其实QQ现在已经很少...
- Seata,让分布式事务不再是难题!实战分享带你领略Seata的魅力!
-
终身学习、乐于分享、共同成长!前言Seata是一款开源的分布式事务解决方案,致力于提供高性能和简单易用的分布式事务服务。Seata将为用户提供了AT、TCC、SAGA和XA事务模式,为用户打造一站式的...
- 常见分布式事务解决方案(分布式事务解决的问题)
-
1.两阶段提交(2PC)原理:分为准备阶段(协调者询问参与者是否可提交)和提交阶段(协调者根据参与者反馈决定提交或回滚)。优点:强一致性,适用于数据库层(如XA协议)。缺点:同步阻塞:所有参与者阻塞...
- 分布式事务:从崩溃到高可用,程序员必须掌握的实战方案!
-
“支付成功,但订单状态未更新!”、“库存扣减后,交易却回滚了!”——如果你在分布式系统中踩过这些“天坑”,这篇文章就是你的救命稻草!本文将手把手拆解分布式事务的核心痛点和6大主流解决方案,用代码实战+...
- 谈谈对分布式事务的一点理解和解决方案
-
分布式事务首先,做系统拆分的时候几乎都会遇到分布式事务的问题,一个仿真的案例如下:项目初期,由于用户体量不大,订单模块和钱包模块共库共应用(大war包时代),模块调用可以简化为本地事务操作,这样做只要...
- 一篇教你通过Seata解决分布式事务问题
-
1 Seata介绍Seata是由阿里中间件团队发起的开源分布式事务框架项目,依赖支持本地ACID事务的关系型数据库,可以高效并且对业务0侵入的方式解决微服务场景下面临的分布式事务问题,目前提供AT...
- Seata分布式事务详解(原理流程及4种模式)
-
Seata分布式事务是SpringCloudAlibaba的核心组件,也是构建分布式的基石,下面我就全面来详解Seata@mikechen本篇已收于mikechen原创超30万字《阿里架构师进阶专题合...
- 分布式事务最终一致性解决方案有哪些?MQ、TCC、saga如何实现?
-
JTA方案适用于单体架构多数据源时实现分布式事务,但对于微服务间的分布式事务就无能为力了,我们需要使用其他的方案实现分布式事务。1、本地消息表本地消息表的核心思想是将分布式事务拆分成本地事务进行处理...
- 彻底掌握分布式事务2PC、3PC模型(分布式事务视频教程)
-
原文:https://mp.weixin.qq.com/s/_zhntxv07GEz9ktAKuj70Q作者:马龙台工作中使用最多的是本地事务,但是在对单一项目拆分为SOA、微服务之后,就会牵扯出分...
- Seata分布式事务框架关于Annotation的SAGA模式分析
-
SAGAAnnotation是ApacheSeata版本2.3.0中引入的功能,它提供了一种使用Java注解而不是传统的JSON配置或编程API来实现SAGA事务模式的声明...
- 分布式事务,原理简单,写起来全是坑
-
今天我们就一起来看下另一种模式,XA模式!其实我觉得seata中的四种不同的分布式事务模式,学完AT、TCC以及XA就够了,Saga不好玩,而且长事务本身就有很多问题,也不推荐使用。S...
- 内存空间节约利器redis的bitmap(位图)应用场景有哪些你知道吗
-
在前面我们分享过一次Redis常用数据结构和使用场景,文章对Redis基本使用做了一个简单的API说明,但是对于其中String类型中的bitmap(位图)我们需要重点说明一下,因为他的作用真的不容忽...
- 分布式事务原理详解(图文全面总结)
-
分布式事务是非常核心的分布式系统,也是大厂经常考察对象,下面我就重点详解分布式事务及原理实现@mikechen本文作者:陈睿|mikechen文章来源:mikechen.cc分布式事务分布式事务指的是...
- 大家平时天天说的分布式系统到底是什么东西?
-
目录从单块系统说起团队越来越大,业务越来越复杂分布式出现:庞大系统分而治之分布式系统所带来的技术问题一句话总结:什么是分布式系统设计和开发经验补充说明:中间件系统及大数据系统前言现在有很多Java技术...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- MVC框架 (46)
- spring框架 (46)
- 框架图 (58)
- bootstrap框架 (43)
- flask框架 (53)
- quartz框架 (51)
- abp框架 (47)
- jpa框架 (47)
- laravel框架 (46)
- express框架 (43)
- springmvc框架 (49)
- 分布式事务框架 (65)
- scrapy框架 (52)
- java框架spring (43)
- grpc框架 (55)
- orm框架有哪些 (43)
- ppt框架 (48)
- 内联框架 (52)
- winform框架 (46)
- gui框架 (44)
- cad怎么画框架 (58)
- ps怎么画框架 (47)
- ssm框架实现登录注册 (49)
- oracle字符串长度 (48)
- oracle提交事务 (47)