如何使用 TensorFlow 构建机器学习模型
ccwgpt 2025-05-08 17:12 22 浏览 0 评论
在这篇文章中,我将逐步讲解如何使用 TensorFlow 创建一个简单的机器学习模型。
TensorFlow 是一个由谷歌开发的库,并在 2015 年开源,它能使构建和训练机器学习模型变得简单。
我们接下来要建立的模型将能够自动将公里转换为英里,在本例中,我们将创建一个能够学习如何进行这种转换的模型。我们将向这个模型提供一个CSV文件作为输入,其中有 29 组已经执行过的公里和英里之间的转换,基于这些数据,我们的模型将学会自动进行这种转换。
我们将使用有监督学习算法,因为我们知道数据的输入和输出结果。并使用 Python 作为编程语言。Python 提供了一系列与机器学习相关的方便的库和工具。本例中所有的步骤都是使用Google Colab执行的。Google Colab 允许我们在浏览器上零配置地编写和执行 Python 代码。
导入必需的库
我们首先导入在我们的例子中将要使用到的库。
import tensorflow as tf
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
复制代码
- 我们将导入 TensorFlow 来创建我们的机器学习模型。
- 我们还将导入 Pandas 库来读取包含有公里和英里转换数据的 CSV 文件。
- 最后,我们将导入 Seaborn 和 Matlotlib 库绘制不同的结果。
加载样例数据
我们将含有逗号分隔的值的文件(Kilometres-miles.csv)读取到我们的数据帧中。这个文件包含一系列公里和英里值的转换。我们将使用这些数据帧来训练我们的模型。你可以在这个链接下载这个文件。
要从 Google Colab 读取文件,你可以使用不同的方法。在本例中,我直接将 CSV 文件上传到我的 Google Colab 上的 sample_data 文件夹中,但你可以从一个 URL 中读取文件(比如,从 GitHub)。
上传到 Google Colab 的问题是,数据会在运行时重启时丢失。
数据帧是二维的大小可变的并且各种各样的表格数据。
df = pd.read_csv('/content/sample_data/Kilometres-miles.csv')
df.info
复制代码
示例数据信息
绘制数据帧
我们将“searborn”库的“scatterplot”导入并命名为“sns”,然后使用这个库来绘制上述图形。它显示了 X(公里)和 Y(英里)对应关系的图形化表示。
print("Painting the correlations")
#Once we load seaborn into the session, everytime a matplotlib plot is executed, seaborn's default customizations are added
sns.scatterplot(df['Kilometres'], df['Miles'])
plt.show()
复制代码
公里和英里的相关性
我们定义数据帧的输入和输出来训练模型:
X(公里)是输入,Y(英里)是输出。
print("Define input(X) and output(Y) variables")
X_train=df['Kilometres']
y_train=df['Miles']
复制代码
输入和输出变量
创建神经网络
现在,让我们使用“keras.Sequential”方法来创建一个神经网络,其中依次添加“layers”。每一个层(layer)都具有逐步提取输入数据以获得所需输出的功能。Keras 是一个用 Python 写的库,我们创建神经网络并使用不同的机器学习框架,例如 TensorFlow。
接下来,我们将使用“add”方法向模型添加一个层。
print("Creating the model")
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(units=1,input_shape=[1]))
复制代码
创建神经网络
编译模型
在训练我们的模型之前,我们将在编译步骤中添加一些额外设置。
我们将设置一个优化器和损失函数,它们会测量我们的模型的准确性。Adam 优化是一种基于第一次和第二次矩的自适应预算的随机梯度下降算法。
为此,我们将使用基于平均方差的损失函数,它测量了我们预测的平均方差。
我们的模型的目标是最小化这个函数。
print("Compiling the model")
model.compile(optimizer=tf.keras.optimizers.Adam(1), loss='mean_squared_error')
复制代码
编译模型
训练模型
我们将使用“拟合(fit)”方法来训练我们的模型。首先,我们传入独立变量或输入变量(X-Kilometers)和目标变量(Y-Miles)。
另一方面,我们预测 epoch 的数值。在本例中,epoch 值是 250。一个 epoch 就是遍历一遍所提供的完整的 X 和 Y 数据。
- 如果 epoch 的数值越小,误差就会越大;反过来,epoch 的数值越大,则误差就会越小。
- 如果 epoch 的数值越大,算法的执行速度就会越慢。
print ("Training the model")
epochs_hist = model.fit(X_train, y_train, epochs = 250)
复制代码
训练模型的控制台
评估模型
现在,我们评估创建的模型,在该模型中,我们可以观察到损失(Training_loss)随着执行的遍历次数(epoch)的增多而减少,如果训练集数据有意义并且是一个足够大的组,这是合乎逻辑的。
print("Evaluating the model")
print(epochs_hist.history.keys())
#graph
plt.plot(epochs_hist.history['loss'])
plt.title('Evolution of the error associated with the model')
plt.xlabel('Epoch')
plt.ylabel('Training Loss')
plt.legend('Training Loss')
plt.show()
复制代码
从图中我们可以看出,用 250 次训练模型并没有多大帮助,在第 50 次遍历后,误差并没有减少。因此,训练该算法的最佳遍历数大约是 50。
进行预测
现在我们已经训练了我们的模型,我们可以使用它来进行预测。
在本例中,我们将 100 赋值给模型的输入变量,然后模型会返回预测的英里数:
kilometers = 100
predictedMiles = model.predict([kilometers])
print("The conversion from Kilometres to Miles is as follows: " + str(predictedMiles))
复制代码
从公里到英里的换算为 62.133785.
检查结果
milesByFormula = kilometers * 0.6214
print("The conversion from kilometers to miles using the mathematical formula is as follows:" + str(milesByFormula))
diference = milesByFormula - predictedMiles
print("Prediction error:" + str(diference))
复制代码
使用公式从公里到英里的换算值为:62.13999999999999。预测误差为 0.00621414
总结
通过本例,我们了解了如何使用 TensorFlow 库来创建一个模型,这个模型已经学会自动将公里数转换为英里数,并且误差很小。
TensorFlow 用于执行此过程的数学非常简单。基本上,本例使用线性回归来创建模型,因为输入变量(公里数)和输出变量(英里数)是线性相关的。在机器学习中,过程中最耗时的部分通常是准备数据。
随着时间的推移,我们收获了一些经验,这些经验可以帮助我们选择最适合的算法及其设置,但一般来说,这是一项分析测试并改进的任务。
作者介绍
Kesk -*- ,软件工程师,软件爱好者,科幻作家。
原文链接
Build Your First Machine Learning Model With TensorFlow
相关推荐
- 2025南通中考作文解读之四:结构框架
-
文题《继续走,迈向远方》结构框架:清晰叙事,层层递进示例结构:1.开头(点题):用环境描写或比喻引出“走”与“远方”,如“人生如一条长路,每一次驻足后,都需要继续走,才能看见更美的风景”。2.中间...
- 高中数学的知识框架(高中数学知识框架图第三章)
-
高中数学的知识框架可以划分为多个核心板块,每个板块包含具体的知识点与内容,以下为详细的知识框架结构:基础知识1.集合与逻辑用语:涵盖集合的概念、表示方式、性质、运算,以及命题、四种命题关系、充分条件...
- 决定人生的六大框架(决定人生的要素)
-
45岁的自己混到今天,其实是失败的,要是早点意识到影响人生的六大框架,也不至于今天的模样啊!排第一的是环境,不是有句话叫人是环境的产物,身边的环境包括身边的人和事,这些都会对一个人产生深远的影响。其次...
- 2023年想考过一级造价师土建计量,看这30个知识点(三)
-
第二章工程构造考点一:工业建筑分类[考频分析]★★★1.按厂房层数分:(1)单层厂房;(2)多层厂房;(3)混合层数厂房。2.按工业建筑用途分:(1)生产厂房;(2)生产辅助厂房;(3)动力用厂房;(...
- 一级建造师习题集-建筑工程实务(第一章-第二节-2)
-
建筑工程管理与实务题库(章节练习)第一章建筑工程技术第二节结构设计与构造二、结构设计1.常见建筑结构体系中,适用建筑高度最小的是()。A.框架结构体系B.剪力墙结构体系C.框架-剪力墙结构体系D...
- 冷眼读书丨多塔斜拉桥,这么美又这么牛
-
”重大交通基础设施的建设是国民经济和社会发展的先导,是交通运输行业新技术集中应用与创新的综合体现。多塔斜拉桥因跨越能力强、地形适应性强、造型优美等特点,备受桥梁设计者的青睐,在未来跨越海峡工程中将得...
- 2021一级造价师土建计量知识点:民用建筑分类
-
2021造价考试备考开始了,学霸君为大家整理了一级造价师备考所用的知识点,希望对大家的备考道路上有所帮助。 民用建筑分类 一、按层数和高度分 1.住宅建筑按层数分类:1~3层为低层住宅,4~6层...
- 6个建筑结构常见类型,你都知道吗?
-
建筑结构是建筑物中支承荷载(作用)起骨架作用的体系。结构是由构件组成的。构件有拉(压)杆、梁、板、柱、拱、壳、薄膜、索、基础等。常见的建筑结构类型有6种:砖混结构、砖木结构、框架结构、钢筋混凝土结构、...
- 框架结构设计经验总结(框架结构设计应注意哪些问题)
-
1.结构设计说明主要是设计依据,抗震等级,人防等级,地基情况及承载力,防潮抗渗做法,活荷载值,材料等级,施工中的注意事项,选用详图,通用详图或节点,以及在施工图中未画出而通过说明来表达的信息。2.各...
- 浅谈混凝土框架结构设计(混凝土框架结构设计主要内容)
-
浅谈混凝土框架结构设计 摘要:结构设计是个系统的全面的工作,需要扎实的理论知识功底,灵活创新的思维和严肃认真负责的工作态度。钢筋混凝土框架结构虽然相对简单,但设计中仍有很多需要注意的问题。本文针...
- 2022一级建造师《建筑实务》1A412020 结构设计 精细考点整理
-
历年真题分布统计1A412021常用建筑结构体系和应用一、混合结构体系【2012-3】指楼盖和屋盖采用钢筋混凝土或钢木结构,而墙和柱采用砌体结构建造的房屋,大多用在住宅、办公楼、教学楼建筑中。优点:...
- 破土动工!这个故宫“分院”科技含量有点儿高
-
故宫“分院”设计图。受访者供图近日,位于北京海淀区西北旺镇的故宫北院区项目已开始破土动工,该项目也被称作故宫“分院”,筹备近十年之久。据悉,故宫本院每年展览文物的数量不到1万件,但是“分院”建成后,预...
- 装配式结构体系介绍(上)(装配式结构如何设计)
-
PC构件深化、构件之间连接节点做法等与相应装配式结构体系密切相关。本节列举目前常见的几种装配式结构体系:装配整体式混凝土剪力墙结构体系、装配整体式混凝土框架结构体系、装配整体式混凝土空腔结构体系(S...
- 这些不是双向抗侧结构体系(这些不是双向抗侧结构体系的特点)
-
双向抗侧土木吧规范对双向抗恻力结构有何规定?为何不应采用单向有墙的结构?双向抗侧土木吧1.规范对双向抗侧力结构体系的要求抗侧力体系是指抵抗水平地震作用及风荷载的结构体系。对于结构体系的布置,规范针对...
- 2022一级建造师《建筑实务》1A412020 结构设计 精细化考点整理
-
1A412021常用建筑结构体系和应用一、混合结构体系【2012-3】指楼盖和屋盖采用钢筋混凝土或钢木结构,而墙和柱采用砌体结构建造的房屋,大多用在住宅、办公楼、教学楼建筑中。优点:抗压强度高,造价...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- MVC框架 (46)
- spring框架 (46)
- 框架图 (58)
- flask框架 (53)
- quartz框架 (51)
- abp框架 (47)
- jpa框架 (47)
- laravel框架 (46)
- springmvc框架 (49)
- 分布式事务框架 (65)
- scrapy框架 (56)
- shiro框架 (61)
- 定时任务框架 (56)
- java日志框架 (61)
- JAVA集合框架 (47)
- grpc框架 (55)
- ppt框架 (48)
- 内联框架 (52)
- winform框架 (46)
- gui框架 (44)
- cad怎么画框架 (58)
- ps怎么画框架 (47)
- ssm框架实现登录注册 (49)
- oracle字符串长度 (48)
- oracle提交事务 (47)