一文详解被阿里腾讯视作核心机密的大数据平台架构
ccwgpt 2024-09-27 07:24 31 浏览 0 评论
上一篇文章讲的是美团的大数据平台架构,相信大家也看到了这种平台的优势,也就是因为这种大数据平台架构的存在,阿里才会提出数据中台这么个非常好用的东西,后面有空会和大家再讲讲数据中台。
好了,言归正传,如果我们能够化整为零,在企业内部从宏观、整体的角度设计和实现一个统一的大数据平台,引入单一集群、单一存储,统一服务和统一安全的架构思想,就能很好的帮助企业解决很多问题。
提到大数据分析平台,不得不说Hadoop系统,Hadoop到现在也超过10年的历史了,很多东西发生了变化,版本也从0.x进化到目前的2.6版本。我把2012年后定义成后Hadoop平台时代,这不是说不用Hadoop,而是像NoSQL (Not Only SQL)那样,有其他的选型补充。
大数据分析平台
Hadoop: 开源的数据分析平台,解决了大数据(大到一台计算机无法进行存储,一台计算机无法在要求的时间内进行处理)的可靠存储和处理。适合处理非结构化数据,包括HDFS,MapReduce基本组件。
HDFS:提供了一种跨服务器的弹性数据存储系统。
MapReduce:技术提供了感知数据位置的标准化处理流程:读取数据,对数据进行映射(Map),使用某个键值对数据进行重排,然后对数据进行化简(Reduce)得到最终的输出。
Amazon Elastic Map Reduce(EMR):托管的解决方案,运行在由Amazon Elastic Compute Cloud(EC2)和Simple Strorage Service(S3)组成的网络规模的基础设施之上。如果你需要一次性的或不常见的大数据处理,EMR可能会为你节省开支。但EMR是高度优化成与S3中的数据一起工作,会有较高的延时。Hadoop 还包含了一系列技术的扩展系统,这些技术主要包括了Sqoop、Flume、Hive、Pig、Mahout、Datafu和HUE等。
这里就不一一列举了,有很多,有感兴趣的可以和我私信讨论。
大数据平台架构
大数据计算通过将可执行的代码分发到大规模的服务器集群上进行分布式计算,以处理大规模的数据,即所谓的移动计算比移动数据更划算。但是这样的计算方式必然不会很快,即使一个规模不太大的数据集上的一次简单计算,MapReduce也可能需要几分钟,Spark快一点,也至少需要数秒的时间。
而网站处理用户请求,需要毫秒级的响应,也就是说,要在1秒内完成计算,大数据计算必然不能实现这样的响应要求。但是网站应用又需要使用大数据实现统计分析、数据挖掘、关联推荐、用户画像等一系列功能。
所以网站需要构建一个大数据平台,去整合网站应用和大数据系统之间的差异,将应用程序产生的数据导入到大数据系统,经过处理计算后再导出给应用程序使用。一个典型的网站大数据平台架构如下图:
大数据平台可分为三个部分:
1.数据采集
将应用程序产生的数据和日志等同步到大数据系统中,由于数据源不同,这里的数据同步系统实际上是多个相关系统的组合。数据库同步通常用Sqoop,日志同步可以选择Flume,打点采集的数据经过格式化转换后通过Kafka传递。
不同的数据源产生的数据质量可能差别很大,数据库中的数据也许可以直接导入大数据系统就可以,而日志和爬虫产生的数据就需要进行大量的清洗、转化处理才能有效使用。所以数据同步系统实际上承担着传统数据仓库ETL的工作。
2.数据处理
这里是大数据存储与计算的核心,数据同步系统导入的数据存储在HDFS。MapReduce、Hive、Spark等计算任务读取HDFS上的数据进行计算,再将计算结果写入HDFS。
MapReduce、Hive、Spark等进行的计算处理被称作是离线计算,HDFS存储的数据被称为离线数据。相对的,用户实时请求需要计算的数据称为在线数据,这些数据由用户实时产生,进行实时在线计算,并把结果数据实时返回用户,这个计算过程中涉及的数据主要是用户自己一次请求产生和需要的数据,数据规模非常小,内存中一个线程上下文就可以处理。
在线数据完成和用户的交互后,被数据同步系统导入到大数据系统,这些数据就是离线数据,其上进行的计算通常针对(某一方面的)全体数据,比如针对所有订单进行商品的关联性挖掘,这时候数据规模非常大,需要较长的运行时间,这类计算就是离线计算。
除了离线计算,还有一些场景,数据规模也比较大,要求的处理时间也比较短。比如淘宝要统计每秒产生的订单数,以便进行监控和宣传。这种场景被称为大数据流式计算,通常用Storm、Spark Steaming等流式大数据引擎来完成,可以在秒级甚至毫秒级时间内完成计算。
3.数据输出与展示
大数据计算产生的数据还是写入到HDFS中,应用程序不可能到HDFS中读取数据,所以必须要将HDFS中的数据导出到数据库中。数据同步导出相对比较容易,计算产生的数据都比较规范,稍作处理就可以用Sqoop之类的系统导出到数据库。
这时,应用程序就可以直接访问数据库中的数据,实时展示给用户,比如展示给用户的关联推荐的商品。淘宝卖家的量子魔方之类的产品,其数据都来自大数据计算产生。
除了给用户访问提供数据,大数据还需要给运营和决策层提供各种统计报告,这些数据也写入数据库,被相应的后台系统访问。很多运营和管理人员,每天一上班,就是登录后台数据系统,查看前一天的数据报表,看业务是否正常。如果数据正常甚至上升,就可以稍微轻松一点,如果数据下跌,焦躁而忙碌的一天也马上就开始了。
将上面三个部分整合起来的是任务调度管理系统,不同的数据何时开始同步,各种MapReduce、Spark任务如何合理调度才能使资源利用最合理、等待的时间又不至于太久,临时的重要任务能够尽快执行,这些都需要任务调度管理系统完成。有时候对分析师和工程师开放的作业提交、进度跟踪,数据查看等功能也集成在这个系统中。
对于每个公司的大数据团队,最核心开发维护的也就是这个系统,大数据平台上的其他系统一般都有成熟的开源软件可以选择,作业调度管理会涉及很多个性化的需求,通常需要团队自己开发。
看到这里,你们对整个大数据平台架构了解了吗,如果还没有,我特地选了几个知名互联网公司的例子给你们,图片有点糊,谅解。
相关推荐
- 一个基于.Net Core遵循Clean Architecture原则开源架构
-
今天给大家推荐一个遵循CleanArchitecture原则开源架构。项目简介这是基于Asp.netCore6开发的,遵循CleanArchitecture原则,可以高效、快速地构建基于Ra...
- AI写代码翻车无数次,我发现只要提前做好这3步,bug立减80%
-
写十万行全是bug之后终于找到方法了开发"提示词管理助手"新版本那会儿,我差点被bug整崩溃。刚开始两周,全靠AI改代码架构,结果十万行程序漏洞百出。本来以为AI说没问题就稳了,结果...
- OneCode低代码平台的事件驱动设计:架构解析与实践
-
引言:低代码平台的事件驱动范式在现代软件开发中,事件驱动架构(EDA)已成为构建灵活、松耦合系统的核心范式。OneCode低代码平台通过创新性的注解驱动设计,将事件驱动理念深度融入平台架构,实现了业务...
- 国内大厂AI插件评测:根据UI图生成Vue前端代码
-
在IDEA中安装大厂的AI插件,打开ruoyi增强项目:yudao-ui-admin-vue31.CodeBuddy插件登录腾讯的CodeBuddy后,大模型选择deepseek-v3,输入提示语:...
- AI+低代码技术揭秘(二):核心架构
-
本文档介绍了为VTJ低代码平台提供支持的基本架构组件,包括Engine编排层、Provider服务系统、数据模型和代码生成管道。有关UI组件库和widget系统的信息,请参阅UI...
- GitDiagram用AI把代码库变成可视化架构图
-
这是一个名为gitdiagram的开源工具,可将GitHub仓库实时转换为交互式架构图,帮助开发者快速理解代码结构。核心功能一键可视化:替换GitHubURL中的"hub...
- 30天自制操作系统:第六天:代码架构整理与中断处理
-
1.拆开bootpack.c文件。根据设计模式将对应的功能封装成独立的文件。2.初始化pic:pic(可编程中断控制器):在设计上,cpu单独只能处理一个中断。而pic是将8个中断信号集合成一个中断...
- AI写代码越帮越忙?2025年研究揭露惊人真相
-
近年来,AI工具如雨后春笋般涌现,许多人开始幻想程序员的未来就是“对着AI说几句话”,就能轻松写出完美的代码。然而,2025年的一项最新研究却颠覆了这一期待,揭示了一个令人意外的结果。研究邀请了16位...
- 一键理解开源项目:两个自动生成GitHub代码架构图与说明书工具
-
一、GitDiagram可以一键生成github代码仓库的架构图如果想要可视化github开源项目:https://github.com/luler/reflex_ai_fast,也可以直接把域名替换...
- 5分钟掌握 c# 网络通讯架构及代码示例
-
以下是C#网络通讯架构的核心要点及代码示例,按协议类型分类整理:一、TCP协议(可靠连接)1.同步通信//服务器端usingSystem.Net.Sockets;usingTcpListene...
- 从复杂到优雅:用建造者和责任链重塑代码架构
-
引用设计模式是软件开发中的重要工具,它为解决常见问题提供了标准化的解决方案,提高了代码的可维护性和可扩展性,提升了开发效率,促进了团队协作,提高了软件质量,并帮助开发者更好地适应需求变化。通过学习和应...
- 低代码开发当道,我还需要学习LangChain这些框架吗?| IT杂谈
-
专注LLM深度应用,关注我不迷路前两天有位兄弟问了个问题:当然我很能理解这位朋友的担忧:期望效率最大化,时间用在刀刃上,“不要重新发明轮子”嘛。铺天盖地的AI信息轰炸与概念炒作,很容易让人浮躁与迷茫。...
- 框架设计并不是简单粗暴地写代码,而是要先弄清逻辑
-
3.框架设计3.框架设计本节我们要开发一个UI框架,底层以白鹭引擎为例。框架设计的第一步并不是直接撸代码,而是先想清楚设计思想,抽象。一个一个的UI窗口是独立的吗?不是的,...
- 大佬用 Avalonia 框架开发的 C# 代码 IDE
-
AvalonStudioAvalonStudio是一个开源的跨平台的开发编辑器(IDE),AvalonStudio的目标是成为一个功能齐全,并且可以让开发者快速使用的IDE,提高开发的生产力。A...
- 轻量级框架Lagent 仅需20行代码即可构建自己的智能代理
-
站长之家(ChinaZ.com)8月30日消息:Lagent是一个专注于基于LLM模型的代理开发的轻量级框架。它的设计旨在简化和提高这种模型下代理的开发效率。LLM模型是一种强大的工具,可以...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- 框架图 (58)
- flask框架 (53)
- quartz框架 (51)
- abp框架 (47)
- springmvc框架 (49)
- 分布式事务框架 (65)
- scrapy框架 (56)
- shiro框架 (61)
- 定时任务框架 (56)
- java日志框架 (61)
- mfc框架 (52)
- abb框架断路器 (48)
- beego框架 (52)
- java框架spring (58)
- grpc框架 (65)
- tornado框架 (48)
- 前端框架bootstrap (54)
- orm框架有哪些 (51)
- 知识框架图 (52)
- ppt框架 (55)
- 框架图模板 (59)
- 内联框架 (52)
- cad怎么画框架 (58)
- ssm框架实现登录注册 (49)
- oracle字符串长度 (48)