谷歌开源NSL框架:利用数据间关系训练神经网络,能生成对抗样本
ccwgpt 2024-09-13 16:01 40 浏览 0 评论
晓查 发自 凹非寺
量子位 出品 | 公众号 QbitAI
今天,谷歌推出了新开源框架——神经结构学习(NSL),它使用神经图学习方法,来训练带有图(Graph)和结构化数据的神经网络,可以带来更强大的模型。
现在,通过TensorFlow就能获取和使用。
NSL有什么用?过去我们使用单独的图片来训练计算机视觉神经网络,这些训练样本之间彼此是孤立的,然而样本之间包含着丰富的关系信息。
如果用上这些数据的结构化信息,就能实现更高的模型精度,或者用更少的样本来训练模型,特别是在标记样本数量相对较少的情况。
另外,NSL也能用于抵御对抗攻击,因为对抗样本往往是在原来样本上做的一种微扰,利用这一层关系,可以提高模型在对抗攻击下的鲁棒性。
谷歌表示,这种NSL技术是通用的,可以应用于任意神经架构,包括前馈神经网络、CNN和RNN。NSL可以为计算机视觉模型、NLP训练模型,并在医疗记录或知识图谱等图形化数据集上进行预测。
谷歌已经将这项技术用于研究中,在今年2月发表的一篇学习图像语义嵌入的文章中,谷歌用它来提高模型的精度。
NSL原理
NSL用到了训练样本之间的结构化信号,它通常用于表示标记或未标记的样品之间的关系或相似性。
这种结构化信号有时是以图的方式显式地包含在数据集中,有时是通过人为构造出来的,前面说到的用微扰生成对抗攻击样本,就是一种隐式表达结构化信号的方式。
如何让结构化信号包含在神经网络之中呢?2018年,谷歌在提交的一篇关于“神经图学习”的论文中,构造了一种考虑数据结构关系的损失函数。
这个损失函数不仅包含常规的监督学习损失项,还引入了一项最近邻损失,如下图所示。通过在训练中让后一项最小化,来保持来自同一结构的输入之间的相似性。
使用方法
在TensorFlow中使用NSL,首先需要安装虚拟环境,设置完虚拟环境后,用pip安装:
pip install --upgrade neural_structured_learning
使用NSL,让我们用结构化信号构建模型变得简单而直接。对于给定图(显式结构)和训练样本的情况,NSL提供了一个工具来处理这些样本并将其组合到TFRecords中进行接下来的训练:
python pack_nbrs.py --max_nbrs=5 \ labeled_data.tfr \ unlabeled_data.tfr \ graph.tsv \ merged_examples.tfr
对于用图表示的结构信号的数据,调用NSL中的API,只需添加不超过5行代码就可以训练一个新的神经网络模型。
import neural_structured_learning as nsl # Create a custom model — sequential, functional, or subclass. base_model = tf.keras.Sequential(…) # Wrap the custom model with graph regularization. graph_config = nsl.configs.GraphRegConfig( neighbor_config=nsl.configs.GraphNeighborConfig(max_neighbors=1)) graph_model = nsl.keras.GraphRegularization(base_model, graph_config) # Compile, train, and evaluate. graph_model.compile(optimizer=’adam’, loss=tf.keras.losses.SparseCategoricalCrossentropy(), metrics=[‘accuracy’]) graph_model.fit(train_dataset, epochs=5) graph_model.evaluate(test_dataset)
这种方法可以使用较少标记的数据进行训练,而不会损失太多精度,一般不超过原始监督数据的10%甚至1%。
然而大部分数据是没有图作为显式结构信号的,这种情况应该怎么办?谷歌在NSL中提供了从原始数据构建图形的工具,NSL通过API构造对抗样本,以此作为隐式结构信号。
import neural_structured_learning as nsl # Create a base model — sequential, functional, or subclass. model = tf.keras.Sequential(…) # Wrap the model with adversarial regularization. adv_config = nsl.configs.make_adv_reg_config(multiplier=0.2, adv_step_size=0.05) adv_model = nsl.keras.AdversarialRegularization(model, adv_config) # Compile, train, and evaluate. adv_model.compile(optimizer=’adam’, loss=’sparse_categorical_crossentropy’, metrics=[‘accuracy’]) adv_model.fit({‘feature’: x_train, ‘label’: y_train}, epochs=5) adv_model.evaluate({‘feature’: x_test, ‘label’: y_test})
同样添加代码不超过5行!这种通过微扰添加对抗样本的训练模型,已被证明可以抵御恶意攻击。而没有添加对抗样本的模型在攻击下准确度会损失30%。
传送门
TensorFlow介绍页面:
https://www.tensorflow.org/neural_structured_learning/
代码地址:
https://github.com/tensorflow/neural-structured-learning
— 完 —
诚挚招聘
量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。
量子位 QbitAI · 头条号签约作者
?'?' ? 追踪AI技术和产品新动态
相关推荐
- 团队管理“布阵术”:3招让你的团队战斗力爆表!
-
为何古代军队能够以一当十?为何现代企业有的团队高效似“特种部队”,有的却松散若“游击队”?**答案正隐匿于“布阵术”之中!**今时今日,让我们从古代兵法里萃取3个核心要义,助您塑造一支战斗力爆棚的...
- 知情人士回应字节大模型团队架构调整
-
【知情人士回应字节大模型团队架构调整】财联社2月21日电,针对原谷歌DeepMind副总裁吴永辉加入字节跳动后引发的团队调整问题,知情人士回应称:吴永辉博士主要负责AI基础研究探索工作,偏基础研究;A...
- 豆包大模型团队开源RLHF框架,训练吞吐量最高提升20倍
-
强化学习(RL)对大模型复杂推理能力提升有关键作用,但其复杂的计算流程对训练和部署也带来了巨大挑战。近日,字节跳动豆包大模型团队与香港大学联合提出HybridFlow。这是一个灵活高效的RL/RL...
- 创业团队如何设计股权架构及分配(创业团队如何设计股权架构及分配方案)
-
创业团队的股权架构设计,决定了公司在随后发展中呈现出的股权布局。如果最初的股权架构就存在先天不足,公司就很难顺利、稳定地成长起来。因此,创业之初,对股权设计应慎之又慎,避免留下巨大隐患和风险。两个人如...
- 消息称吴永辉入职后引发字节大模型团队架构大调整
-
2月21日,有消息称前谷歌大佬吴永辉加入字节跳动,并担任大模型团队Seed基础研究负责人后,引发了字节跳动大模型团队架构大调整。多名原本向朱文佳汇报的算法和技术负责人开始转向吴永辉汇报。简单来说,就是...
- 31页组织效能提升模型,经营管理团队搭建框架与权责定位
-
分享职场干货,提升能力!为职场精英打造个人知识体系,升职加薪!31页组织效能提升模型如何拿到分享的源文件:请您关注本头条号,然后私信本头条号“文米”2个字,按照操作流程,专人负责发送源文件给您。...
- 异形柱结构(异形柱结构技术规程)
-
下列关于混凝土异形柱结构设计的说法,其中何项正确?(A)混凝土异形柱框架结构可用于所有非抗震和抗震设防地区的一般居住建筑。(B)抗震设防烈度为6度时,对标准设防类(丙类)采用异形柱结构的建筑可不进行地...
- 职场干货:金字塔原理(金字塔原理实战篇)
-
金字塔原理的适用范围:金字塔原理适用于所有需要构建清晰逻辑框架的文章。第一篇:表达的逻辑。如何利用金字塔原理构建基本的金字塔结构受众(包括读者、听众、观众或学员)最容易理解的顺序:先了解主要的、抽象的...
- 底部剪力法(底部剪力法的基本原理)
-
某四层钢筋混凝土框架结构,计算简图如图1所示。抗震设防类别为丙类,抗震设防烈度为8度(0.2g),Ⅱ类场地,设计地震分组为第一组,第一自振周期T1=0.55s。一至四层的楼层侧向刚度依次为:K1=1...
- 结构等效重力荷载代表值(等效重力荷载系数)
-
某五层钢筋混凝土框架结构办公楼,房屋高度25.45m。抗震设防烈度8度,设防类别丙类,设计基本地震加速度0.2g,设计地震分组第二组,场地类别为Ⅱ类,混凝土强度等级C30。该结构平面和竖向均规则。假定...
- 体系结构已成昭告后世善莫大焉(体系构架是什么意思)
-
实践先行也理论已初步完成框架结构留余后人后世子孙俗话说前人栽树后人乘凉在夏商周大明大清民国共和前人栽树下吾之辈已完成结构体系又俗话说青出于蓝而胜于蓝各个时期任务不同吾辈探索框架结构体系经历有限肯定发展...
- 框架柱抗震构造要求(框架柱抗震设计)
-
某现浇钢筋混凝土框架-剪力墙结构高层办公楼,抗震设防烈度为8度(0.2g),场地类别为Ⅱ类,抗震等级:框架二级,剪力墙一级,混凝土强度等级:框架柱及剪力墙C50,框架梁及楼板C35,纵向钢筋及箍筋均采...
- 梁的刚度、挠度控制(钢梁挠度过大会引起什么原因)
-
某办公楼为现浇钢筋混凝土框架结构,r0=1.0,混凝土强度等级C35,纵向钢筋采用HRB400,箍筋采用HPB300。其二层(中间楼层)的局部平面图和次梁L-1的计算简图如图1~3(Z)所示,其中,K...
- 死要面子!有钱做大玻璃窗,却没有钱做“柱和梁”,不怕房塌吗?
-
活久见,有钱做2层落地大玻璃窗,却没有钱做“柱子和圈梁”,这样的农村自建房,安全吗?最近刷到个魔幻施工现场,如下图,这栋5开间的农村自建房,居然做了2个全景落地窗仔细观察,这2个落地窗还是飘窗,为了追...
- 不是承重墙,物业也不让拆?话说装修就一定要拆墙才行么
-
最近发现好多朋友装修时总想拆墙“爆改”空间,别以为只要避开承重墙就能随便砸!我家楼上邻居去年装修,拆了阳台矮墙想扩客厅,结果物业直接上门叫停。后来才知道,这种配重墙拆了会让阳台承重失衡,整栋楼都可能变...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- MVC框架 (46)
- spring框架 (46)
- 框架图 (58)
- bootstrap框架 (43)
- flask框架 (53)
- quartz框架 (51)
- abp框架 (47)
- jpa框架 (47)
- laravel框架 (46)
- express框架 (43)
- scrapy框架 (52)
- beego框架 (42)
- java框架spring (43)
- grpc框架 (55)
- 前端框架bootstrap (42)
- orm框架有哪些 (43)
- ppt框架 (48)
- 内联框架 (52)
- winform框架 (46)
- gui框架 (44)
- cad怎么画框架 (58)
- ps怎么画框架 (47)
- ssm框架实现登录注册 (49)
- oracle字符串长度 (48)
- oracle提交事务 (47)