百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

Java教程:dubbo源码解析-网络通信(1)

ccwgpt 2024-10-02 12:10 23 浏览 0 评论

在之前的内容中,我们讲解了消费者端服务发现与提供者端服务暴露的相关内容,同时也知道消费者端通过内置的负载均衡算法获取合适的调用invoker进行远程调用。那么,本章节重点关注的就是远程调用过程即网络通信。

网络通信位于Remoting模块:

  • Remoting 实现是 Dubbo 协议的实现,如果你选择 RMI 协议,整个 Remoting 都不会用上;
  • Remoting 内部再划为 Transport 传输层Exchange 信息交换层
  • Transport 层只负责单向消息传输,是对 Mina, Netty, Grizzly 的抽象,它也可以扩展 UDP 传输;
  • Exchange 层是在传输层之上封装了 Request-Response 语义;

网络通信的问题:

  • 客户端与服务端连通性问题
  • 粘包拆包问题
  • 异步多线程数据一致问题

通信协议

dubbo内置,dubbo协议 ,rmi协议,hessian协议,http协议,webservice协议,thrift协议,rest协议,grpc协议,memcached协议,redis协议等10种通讯协议。各个协议特点如下

dubbo协议

Dubbo 缺省协议采用单一长连接和 NIO 异步通讯,适合于小数据量大并发的服务调用,以及服务消费者机器数远大于服务提供者机器数的情况。

缺省协议,使用基于 mina 1.1.7 和 hessian 3.2.1 的 tbremoting 交互。

  • 连接个数:单连接
  • 连接方式:长连接
  • 传输协议:TCP
  • 传输方式:NIO 异步传输
  • 序列化:Hessian 二进制序列化
  • 适用范围:传入传出参数数据包较小(建议小于100K),消费者比提供者个数多,单一消费者无法压满提供者,尽量不要用 dubbo 协议传输大文件或超大字符串。
  • 适用场景:常规远程服务方法调用

rmi协议

RMI 协议采用 JDK 标准的 java.rmi.* 实现,采用阻塞式短连接和 JDK 标准序列化方式。

  • 连接个数:多连接
  • 连接方式:短连接
  • 传输协议:TCP
  • 传输方式:同步传输
  • 序列化:Java 标准二进制序列化
  • 适用范围:传入传出参数数据包大小混合,消费者与提供者个数差不多,可传文件。
  • 适用场景:常规远程服务方法调用,与原生RMI服务互操作

hessian协议

Hessian 协议用于集成 Hessian 的服务,Hessian 底层采用 Http 通讯,采用 Servlet 暴露服务,Dubbo 缺省内嵌 Jetty 作为服务器实现。

Dubbo 的 Hessian 协议可以和原生 Hessian 服务互操作,即:

  • 提供者用 Dubbo 的 Hessian 协议暴露服务,消费者直接用标准 Hessian 接口调用
  • 或者提供方用标准 Hessian 暴露服务,消费方用 Dubbo 的 Hessian 协议调用。
  • 连接个数:多连接
  • 连接方式:短连接
  • 传输协议:HTTP
  • 传输方式:同步传输
  • 序列化:Hessian二进制序列化
  • 适用范围:传入传出参数数据包较大,提供者比消费者个数多,提供者压力较大,可传文件。
  • 适用场景:页面传输,文件传输,或与原生hessian服务互操作

http协议

基于 HTTP 表单的远程调用协议,采用 Spring 的 HttpInvoker 实现

  • 连接个数:多连接
  • 连接方式:短连接
  • 传输协议:HTTP
  • 传输方式:同步传输
  • 序列化:表单序列化
  • 适用范围:传入传出参数数据包大小混合,提供者比消费者个数多,可用浏览器查看,可用表单或URL传入参数,暂不支持传文件。
  • 适用场景:需同时给应用程序和浏览器 JS 使用的服务。

webservice协议

基于 WebService 的远程调用协议,基于 Apache CXF 实现](http://dubbo.apache.org/zh-cn/docs/user/references/protocol/webservice.html#fn2)。

可以和原生 WebService 服务互操作,即:

  • 提供者用 Dubbo 的 WebService 协议暴露服务,消费者直接用标准 WebService 接口调用,
  • 或者提供方用标准 WebService 暴露服务,消费方用 Dubbo 的 WebService 协议调用。
  • 连接个数:多连接
  • 连接方式:短连接
  • 传输协议:HTTP
  • 传输方式:同步传输
  • 序列化:SOAP 文本序列化(http + xml)
  • 适用场景:系统集成,跨语言调用

thrift协议

当前 dubbo 支持 [1]的 thrift 协议是对 thrift 原生协议 [2] 的扩展,在原生协议的基础上添加了一些额外的头信息,比如 service name,magic number 等。

rest协议

基于标准的Java REST API——JAX-RS 2.0(Java API for RESTful Web Services的简写)实现的REST调用支持

grpc协议

Dubbo 自 2.7.5 版本开始支持 gRPC 协议,对于计划使用 HTTP/2 通信,或者想利用 gRPC 带来的 Stream、反压、Reactive 编程等能力的开发者来说, 都可以考虑启用 gRPC 协议。

  • 为期望使用 gRPC 协议的用户带来服务治理能力,方便接入 Dubbo 体系
  • 用户可以使用 Dubbo 风格的,基于接口的编程风格来定义和使用远程服务

memcached协议

基于 memcached实现的 RPC 协议

redis协议

基于 Redis 实现的 RPC 协议

序列化

序列化就是将对象转成字节流,用于网络传输,以及将字节流转为对象,用于在收到字节流数据后还原成对象。序列化的优势有很多,例如安全性更好、可跨平台等。我们知道dubbo基于netty进行网络通讯,在NettyClient.doOpen()方法中可以看到Netty的相关类

bootstrap.setPipelineFactory(new ChannelPipelineFactory() {
    public ChannelPipeline getPipeline() {
        NettyCodecAdapter adapter = new NettyCodecAdapter(getCodec(), getUrl(), NettyClient.this);
        ChannelPipeline pipeline = Channels.pipeline();
        pipeline.addLast("decoder", adapter.getDecoder());
        pipeline.addLast("encoder", adapter.getEncoder());
        pipeline.addLast("handler", nettyHandler);
        return pipeline;
    }
});

然后去看NettyCodecAdapter 类最后进入ExchangeCodec类的encodeRequest方法,如下:

 protected void encodeRequest(Channel channel, ChannelBuffer buffer, Request req) throws IOException {
        Serialization serialization = getSerialization(channel);
        // header.
        byte[] header = new byte[HEADER_LENGTH];

是的,就是Serialization接口,默认是Hessian2Serialization序列化接口。

Dubbo序列化支持java、compactedjava、nativejava、fastjson、dubbo、fst、hessian2、kryo,protostuff其中默认hessian2。其中java、compactedjava、nativejava属于原生java的序列化。

  • dubbo序列化:阿里尚未开发成熟的高效java序列化实现,阿里不建议在生产环境使用它。
  • hessian2序列化:hessian是一种跨语言的高效二进制序列化方式。但这里实际不是原生的hessian2序列化,而是阿里修改过的,它是dubbo RPC默认启用的序列化方式。
  • json序列化:目前有两种实现,一种是采用的阿里的fastjson库,另一种是采用dubbo中自己实现的简单json库,但其实现都不是特别成熟,而且json这种文本序列化性能一般不如上面两种二进制序列化。
  • java序列化:主要是采用JDK自带的Java序列化实现,性能很不理想。

最近几年,各种新的高效序列化方式层出不穷,不断刷新序列化性能的上限,最典型的包括:

  • 专门针对Java语言的:Kryo,FST等等
  • 跨语言的:Protostuff,ProtoBuf,Thrift,Avro,MsgPack等等

这些序列化方式的性能多数都显著优于 hessian2 (甚至包括尚未成熟的dubbo序列化)。所以我们可以为 dubbo 引入 Kryo 和 FST 这两种高效 Java 来优化 dubbo 的序列化。

使用Kryo和FST非常简单,只需要在dubbo RPC的XML配置中添加一个属性即可:

<dubbo:protocol name="dubbo" serialization="kryo"/>

网络通信

dubbo中数据格式

解决socket中数据粘包拆包问题,一般有三种方式

  • 定长协议(数据包长度一致)
    • 定长的协议是指协议内容的长度是固定的,比如协议byte长度是50,当从网络上读取50个byte后,就进行decode解码操作。定长协议在读取或者写入时,效率比较高,因为数据缓存的大小基本都确定了,就好比数组一样,缺陷就是适应性不足,以RPC场景为例,很难估计出定长的长度是多少。
  • 特殊结束符(数据尾:通过特殊的字符标识#)
    • 相比定长协议,如果能够定义一个特殊字符作为每个协议单元结束的标示,就能够以变长的方式进行通信,从而在数据传输和高效之间取得平衡,比如用特殊字符\n。特殊结束符方式的问题是过于简单的思考了协议传输的过程,对于一个协议单元必须要全部读入才能够进行处理,除此之外必须要防止用户传输的数据不能同结束符相同,否则就会出现紊乱。
  • 变长协议(协议头+payload模式)
    • 这种一般是自定义协议,会以定长加不定长的部分组成,其中定长的部分需要描述不定长的内容长度。
    • dubbo就是使用这种形式的数据传输格式

Dubbo 框架定义了私有的RPC协议,其中请求和响应协议的具体内容我们使用表格来展示。

Dubbo 数据包分为消息头和消息体,消息头用于存储一些元信息,比如魔数(Magic),数据包类型(Request/Response),消息体长度(Data Length)等。消息体中用于存储具体的调用消息,比如方法名称,参数列表等。下面简单列举一下消息头的内容。

偏移量(Bit)

字段

取值

0 ~ 7

魔数高位

0xda00

8 ~ 15

魔数低位

0xbb

16

数据包类型

0 - Response, 1 - Request

17

调用方式

仅在第16位被设为1的情况下有效,0 - 单向调用,1 - 双向调用

18

事件标识

0 - 当前数据包是请求或响应包,1 - 当前数据包是心跳包

19 ~ 23

序列化器编号

2 - Hessian2Serialization 3 - JavaSerialization 4 - CompactedJavaSerialization 6 - FastJsonSerialization 7 - NativeJavaSerialization 8 - KryoSerialization 9 - FstSerialization

24 ~ 31

状态

20 - OK 30 - CLIENT_TIMEOUT 31 - SERVER_TIMEOUT 40 - BAD_REQUEST 50 - BAD_RESPONSE ......

32 ~ 95

请求编号

共8字节,运行时生成

96 ~ 127

消息体长度

运行时计算

消费方发送请求

(1)发送请求

为了便于大家阅读代码,这里以 DemoService 为例,将 sayHello 方法的整个调用路径贴出来。

proxy0#sayHello(String)
  —> InvokerInvocationHandler#invoke(Object, Method, Object[])
    —> MockClusterInvoker#invoke(Invocation)
      —> AbstractClusterInvoker#invoke(Invocation)
        —> FailoverClusterInvoker#doInvoke(Invocation, List<Invoker<T>>, LoadBalance)
          —> Filter#invoke(Invoker, Invocation)  // 包含多个 Filter 调用
            —> ListenerInvokerWrapper#invoke(Invocation) 
              —> AbstractInvoker#invoke(Invocation) 
                —> DubboInvoker#doInvoke(Invocation)
                  —> ReferenceCountExchangeClient#request(Object, int)
                    —> HeaderExchangeClient#request(Object, int)
                      —> HeaderExchangeChannel#request(Object, int)
                        —> AbstractPeer#send(Object)
                          —> AbstractClient#send(Object, boolean)
                            —> NettyChannel#send(Object, boolean)
                              —> NioClientSocketChannel#write(Object)

dubbo消费方,自动生成代码对象如下

public class proxy0 implements ClassGenerator.DC, EchoService, DemoService {

    private InvocationHandler handler;

    public String sayHello(String string) {
        // 将参数存储到 Object 数组中
        Object[] arrobject = new Object[]{string};
        // 调用 InvocationHandler 实现类的 invoke 方法得到调用结果
        Object object = this.handler.invoke(this, methods[0], arrobject);
        // 返回调用结果
        return (String)object;
    }
}

InvokerInvocationHandler 中的 invoker 成员变量类型为 MockClusterInvoker,MockClusterInvoker 内部封装了服务降级逻辑。下面简单看一下:

    public Result invoke(Invocation invocation) throws RpcException {
        Result result = null;
        // 获取 mock 配置值
        String value = directory.getUrl().getMethodParameter(invocation.getMethodName(), MOCK_KEY, Boolean.FALSE.toString()).trim();
        if (value.length() == 0 || value.equalsIgnoreCase("false")) {
             // 无 mock 逻辑,直接调用其他 Invoker 对象的 invoke 方法,
            // 比如 FailoverClusterInvoker
            result = this.invoker.invoke(invocation);
        } else if (value.startsWith("force")) {
            // force:xxx 直接执行 mock 逻辑,不发起远程调用
            result = doMockInvoke(invocation, null);
        } else {
             // fail:xxx 表示消费方对调用服务失败后,再执行 mock 逻辑,不抛出异常
            try {
                result = this.invoker.invoke(invocation);
            } catch (RpcException e) {
                 // 调用失败,执行 mock 逻辑
                result = doMockInvoke(invocation, e);
            }
        }
        return result;
    }

考虑到前文已经详细分析过 FailoverClusterInvoker,因此本节略过 FailoverClusterInvoker,直接分析 DubboInvoker。

public abstract class AbstractInvoker<T> implements Invoker<T> {
    
    public Result invoke(Invocation inv) throws RpcException {
        if (destroyed.get()) {
            throw new RpcException("Rpc invoker for service ...");
        }
        RpcInvocation invocation = (RpcInvocation) inv;
        // 设置 Invoker
        invocation.setInvoker(this);
        if (attachment != null && attachment.size() > 0) {
            // 设置 attachment
            invocation.addAttachmentsIfAbsent(attachment);
        }
        Map<String, String> contextAttachments = RpcContext.getContext().getAttachments();
        if (contextAttachments != null && contextAttachments.size() != 0) {
            // 添加 contextAttachments 到 RpcInvocation#attachment 变量中
            invocation.addAttachments(contextAttachments);
        }
        if (getUrl().getMethodParameter(invocation.getMethodName(), Constants.ASYNC_KEY, false)) {
            // 设置异步信息到 RpcInvocation#attachment 中
            invocation.setAttachment(Constants.ASYNC_KEY, Boolean.TRUE.toString());
        }
        RpcUtils.attachInvocationIdIfAsync(getUrl(), invocation);

        try {
            // 抽象方法,由子类实现
            return doInvoke(invocation);
        } catch (InvocationTargetException e) {
            // ...
        } catch (RpcException e) {
            // ...
        } catch (Throwable e) {
            return new RpcResult(e);
        }
    }

    protected abstract Result doInvoke(Invocation invocation) throws Throwable;
    
    // 省略其他方法
}

上面的代码来自 AbstractInvoker 类,其中大部分代码用于添加信息到 RpcInvocation#attachment 变量中,添加完毕后,调用 doInvoke 执行后续的调用。doInvoke 是一个抽象方法,需要由子类实现,下面到 DubboInvoker 中看一下。

  @Override
    protected Result doInvoke(final Invocation invocation) throws Throwable {
        RpcInvocation inv = (RpcInvocation) invocation;
        final String methodName = RpcUtils.getMethodName(invocation);
        //将目标方法以及版本好作为参数放入到Invocation中
        inv.setAttachment(PATH_KEY, getUrl().getPath());
        inv.setAttachment(VERSION_KEY, version);

        //获得客户端连接
        ExchangeClient currentClient; //初始化invoker的时候,构建的一个远程通信连接
        if (clients.length == 1) { //默认
            currentClient = clients[0];
        } else {
            //通过取模获得其中一个连接
            currentClient = clients[index.getAndIncrement() % clients.length];
        }
        try {
            //表示当前的方法是否存在返回值
            boolean isOneway = RpcUtils.isOneway(getUrl(), invocation);
            int timeout = getUrl().getMethodParameter(methodName, TIMEOUT_KEY, DEFAULT_TIMEOUT);
            //isOneway 为 true,表示“单向”通信
            if (isOneway) {//异步无返回值
                boolean isSent = getUrl().getMethodParameter(methodName, Constants.SENT_KEY, false);
                currentClient.send(inv, isSent);
                RpcContext.getContext().setFuture(null);
                return AsyncRpcResult.newDefaultAsyncResult(invocation);
            } else { //存在返回值
                //是否采用异步
                AsyncRpcResult asyncRpcResult = new AsyncRpcResult(inv);
                CompletableFuture<Object> responseFuture = currentClient.request(inv, timeout);
                responseFuture.whenComplete((obj, t) -> {
                    if (t != null) {
                        asyncRpcResult.completeExceptionally(t);
                    } else {
                        asyncRpcResult.complete((AppResponse) obj);
                    }
                });
                RpcContext.getContext().setFuture(new FutureAdapter(asyncRpcResult));
                return asyncRpcResult;
            }
        } 
        //省略无关代码
    }

最终进入到HeaderExchangeChannel#request方法,拼装Request并将请求发送出去

public CompletableFuture<Object> request(Object request, int timeout) throws RemotingException {
        if (closed) {
            throw new RemotingException(this.getLocalAddress(), null, "Failed tosend request " + request + ", cause: The channel " + this + " is closed!");
        }
        // 创建请求对象
        Request req = new Request();
        req.setVersion(Version.getProtocolVersion());
        req.setTwoWay(true);
        req.setData(request);
        DefaultFuture future = DefaultFuture.newFuture(channel, req, timeout);
        try {
            //NettyClient
            channel.send(req);
        } catch (RemotingException e) {
            future.cancel();
            throw e;
        }
        return future;
    }

(2)请求编码

在netty启动时,我们设置了编解码器,其中通过ExchangeCodec完成编解码工作如下:

public class ExchangeCodec extends TelnetCodec {

    // 消息头长度
    protected static final int HEADER_LENGTH = 16;
    // 魔数内容
    protected static final short MAGIC = (short) 0xdabb;
    protected static final byte MAGIC_HIGH = Bytes.short2bytes(MAGIC)[0];
    protected static final byte MAGIC_LOW = Bytes.short2bytes(MAGIC)[1];
    protected static final byte FLAG_REQUEST = (byte) 0x80;
    protected static final byte FLAG_TWOWAY = (byte) 0x40;
    protected static final byte FLAG_EVENT = (byte) 0x20;
    protected static final int SERIALIZATION_MASK = 0x1f;
    private static final Logger logger = LoggerFactory.getLogger(ExchangeCodec.class);

    public Short getMagicCode() {
        return MAGIC;
    }

    @Override
    public void encode(Channel channel, ChannelBuffer buffer, Object msg) throws IOException {
        if (msg instanceof Request) {
            // 对 Request 对象进行编码
            encodeRequest(channel, buffer, (Request) msg);
        } else if (msg instanceof Response) {
            // 对 Response 对象进行编码,后面分析
            encodeResponse(channel, buffer, (Response) msg);
        } else {
            super.encode(channel, buffer, msg);
        }
    }

    protected void encodeRequest(Channel channel, ChannelBuffer buffer, Request req) throws IOException {
        Serialization serialization = getSerialization(channel);

        // 创建消息头字节数组,长度为 16
        byte[] header = new byte[HEADER_LENGTH];

        // 设置魔数
        Bytes.short2bytes(MAGIC, header);

        // 设置数据包类型(Request/Response)和序列化器编号
        header[2] = (byte) (FLAG_REQUEST | serialization.getContentTypeId());

        // 设置通信方式(单向/双向)
        if (req.isTwoWay()) {
            header[2] |= FLAG_TWOWAY;
        }
        
        // 设置事件标识
        if (req.isEvent()) {
            header[2] |= FLAG_EVENT;
        }

        // 设置请求编号,8个字节,从第4个字节开始设置
        Bytes.long2bytes(req.getId(), header, 4);

        // 获取 buffer 当前的写位置
        int savedWriteIndex = buffer.writerIndex();
        // 更新 writerIndex,为消息头预留 16 个字节的空间
        buffer.writerIndex(savedWriteIndex + HEADER_LENGTH);
        ChannelBufferOutputStream bos = new ChannelBufferOutputStream(buffer);
        // 创建序列化器,比如 Hessian2ObjectOutput
        ObjectOutput out = serialization.serialize(channel.getUrl(), bos);
        if (req.isEvent()) {
            // 对事件数据进行序列化操作
            encodeEventData(channel, out, req.getData());
        } else {
            // 对请求数据进行序列化操作
            encodeRequestData(channel, out, req.getData(), req.getVersion());
        }
        out.flushBuffer();
        if (out instanceof Cleanable) {
            ((Cleanable) out).cleanup();
        }
        bos.flush();
        bos.close();
        
        // 获取写入的字节数,也就是消息体长度
        int len = bos.writtenBytes();
        checkPayload(channel, len);

        // 将消息体长度写入到消息头中
        Bytes.int2bytes(len, header, 12);

        // 将 buffer 指针移动到 savedWriteIndex,为写消息头做准备
        buffer.writerIndex(savedWriteIndex);
        // 从 savedWriteIndex 下标处写入消息头
        buffer.writeBytes(header);
        // 设置新的 writerIndex,writerIndex = 原写下标 + 消息头长度 + 消息体长度
        buffer.writerIndex(savedWriteIndex + HEADER_LENGTH + len);
    }
    
    // 省略其他方法
}

以上就是请求对象的编码过程,该过程首先会通过位运算将消息头写入到 header 数组中。然后对 Request 对象的 data 字段执行序列化操作,序列化后的数据最终会存储到 ChannelBuffer 中。序列化操作执行完后,可得到数据序列化后的长度 len,紧接着将 len 写入到 header 指定位置处。最后再将消息头字节数组 header 写入到 ChannelBuffer 中,整个编码过程就结束了。本节的最后,我们再来看一下 Request 对象的 data 字段序列化过程,也就是 encodeRequestData 方法的逻辑,如下:

public class DubboCodec extends ExchangeCodec implements Codec2 {
    
	protected void encodeRequestData(Channel channel, ObjectOutput out, Object data, String version) throws IOException {
        RpcInvocation inv = (RpcInvocation) data;

        // 依次序列化 dubbo version、path、version
        out.writeUTF(version);
        out.writeUTF(inv.getAttachment(Constants.PATH_KEY));
        out.writeUTF(inv.getAttachment(Constants.VERSION_KEY));

        // 序列化调用方法名
        out.writeUTF(inv.getMethodName());
        // 将参数类型转换为字符串,并进行序列化
        out.writeUTF(ReflectUtils.getDesc(inv.getParameterTypes()));
        Object[] args = inv.getArguments();
        if (args != null)
            for (int i = 0; i < args.length; i++) {
                // 对运行时参数进行序列化
                out.writeObject(encodeInvocationArgument(channel, inv, i));
            }
        
        // 序列化 attachments
        out.writeObject(inv.getAttachments());
    }
}

至此,关于服务消费方发送请求的过程就分析完了,接下来我们来看一下服务提供方是如何接收请求的。

相关推荐

Dubbo最全详解(万字图文总结)

大家好,我是mikechen。Dubbo是非常重要的分布式中间件,也是微服务的核心框架,而且大厂也特别喜欢考察Dubbo,下面我就全面来详解Dubbo@mikechen本篇已收于mikechen原创超...

探秘Dubbo:RPC框架的奇妙世界

探秘Dubbo:RPC框架的奇妙世界大家好啊!今天我要带大家走进一个神奇的编程领域——分布式服务调用。说起分布式系统,很多程序员都头疼不已。但今天咱们不谈那些让人抓狂的网络延迟、负载均衡等问题,而是聚...

Dubbo分布式服务框架:像调教宠物一样驾驭它

Dubbo分布式服务框架:像调教宠物一样驾驭它大家好呀,今天我们来聊聊Dubbo这个分布式服务框架,它就像一只温顺的小猫咪,但有时候也会调皮捣蛋,所以得好好调教一番。别担心,我会用最轻松的方式来帮你搞...

深入浅出:Dubbo框架源码分析

深入浅出:Dubbo框架源码分析Dubbo是一款由阿里巴巴开源的高性能分布式服务框架,广泛应用于微服务架构中。它为开发者提供了强大的RPC调用能力,使得分布式系统中的服务间通信变得简单高效。本文...

Dubbo分布式服务框架:从零开始的实战之旅

Dubbo分布式服务框架:从零开始的实战之旅Dubbo作为一个高性能的JavaRPC框架,在微服务架构中扮演着重要角色。它能帮助开发者轻松构建分布式系统,实现服务间的高效通信。今天,我们就来一起探索...

Dubbo分布式服务框架的工作原理:从入门到精通

Dubbo分布式服务框架的工作原理:从入门到精通Dubbo是一个高性能的Java分布式服务框架,由阿里巴巴开源。它致力于提供透明化的远程方法调用(RPC),使得开发者能够像调用本地服务一样调用远程服务...

框架的本质分析——Dubbo

诞生的背景什么背景下诞生了该技术?不论是哪个框架,不会平白无故诞生,不会平白无故的被人所追捧,了解其背景,追根溯源。随着互联网的发展,网站应用的规模不断扩大,常规的垂直应用架构已无法应对,分布式服务架...

2023编导艺考「热点话题」评述框架示例(七个2022热点)

2022冬奥会开幕式(1)“旧”文化符号的“新”应用(2)“全媒体”时代的“小人物”(3)“简约”的形式表达“丰富”的内核(4)“新”叙事结构打破“旧”国家形象(5)数字媒介增强受众“在场感”短视频“...

84页思考的框架,思维模型的全明星集合,9种经典思维模型

分享职场干货,提升能力!为职场精英打造个人知识体系,升职加薪!84页思考的框架如何拿到分享的源文件:请您关注、转发,然后私信本头条号“文米”2个字,按照操作流程,专人负责发送源文件给您。...

DUSt3R-从任意图像集合中重建3D场景的框架

DUSt3R是什么DUSt3R(DenseandUnconstrainedStereo3DReconstruction,密集无约束立体三维重建)是由来自芬兰阿尔托大学和Naver欧洲实验室的...

高考数学:一张思维导图掌握集合知识点,真题解析巩固知识

一、思维导图二、疑难透析三、题型示例1、已知集合A={1,3},B={x丨mx-3=0},且A∪B=A,则m的取值是()。【解析】分类讨论思想∵AUB=A∴BA(1)当m=0时,B=,符合条件;...

java集合框架03——ArrayList和源码分析

上一章学习了Collection的架构,并阅读了部分源码,这一章开始,我们将对Collection的具体实现进行详细学习。首先学习List。而ArrayList又是List中最为常用的,因此本章先学习...

Java Collections 工具类集合框架中常用算法解析

在软件开发中,算法是非常重要的一部分,它们可以提供高效的数据处理和操作。在Java集合框架中,有几个常用的算法,包括排序算法、二分查找算法、洗牌算法和旋转算法。本文将对这些算法进行详细解析,并写了一些...

1.6、Java 异常处理机制与集合框架(List、Set、Map等)

在Java编程中,异常处理机制和集合框架是两个非常重要的概念。前者帮助开发者处理程序运行时可能遇到的错误,确保程序能够稳定运行;后者则提供了一种有效的方式来管理和操作数据集合。本文将分别介绍Java中...

Java集合框架性能优化秘籍

Java集合框架性能优化秘籍在Java的世界里,集合框架就像一座巨大的宝库,存储着我们程序的各种数据。然而,随着数据量的增大,如何让这座宝库更高效地运作,就成了我们必须掌握的艺术。今天,我们就来聊聊J...

取消回复欢迎 发表评论: