超干货:Golang 简洁架构实战(golang架构师必看)
ccwgpt 2024-10-03 18:45 67 浏览 0 评论
作者:bearluo,腾讯 IEG 运营开发工程师
由于 golang 不像 java 一样有一个统一的编码模式,所以我们和其他团队一样,采用了 Go 面向包的设计和架构分层这篇文章介绍的一些理论,然后再结合以往的项目经验来进行分包:
├── cmd/
│ └── main.go //启动函数
├── etc
│ └── dev_conf.yaml // 配置文件
├── global
│ └── global.go //全局变量引用,如数据库、kafka等
├── internal/
│ └── service/
│ └── xxx_service.go //业务逻辑处理类
│ └── xxx_service_test.go
│ └── model/
│ └── xxx_info.go//结构体
│ └── api/
│ └── xxx_api.go//路由对应的接口实现
│ └── router/
│ └── router.go//路由
│ └── pkg/
│ └── datetool//时间工具类
│ └── jsontool//json 工具类
其实上面的这个划分只是简单的将功能分了一下包,在项目实践的过程中还是有很多问题。比如:
- 对于功能实现我是通过 function 的参数传递还是通过结构体的变量传递?
- 使用一个数据库的全局变量引用传递是否安全?是否存在过度耦合?
- 在代码实现过程中几乎全部都是依赖于实现,而不是依赖于接口,那么将 MySQL 切换为 MongDB 是不是要修改所有的实现?
所以现在在我们工作中随着代码越来越多,代码中各种 init,function,struct,全局变量感觉也越来越乱。每个模块不独立,看似按逻辑分了模块,但没有明确的上下层关系,每个模块里可能都存在配置读取,外部服务调用,协议转换等。久而久之服务不同包函数之间的调用慢慢演变成网状结构,数据流的流向和逻辑的梳理变得越来越复杂,很难不看代码调用的情况下搞清楚数据流向。
不过就像《重构》中所说:先让代码工作起来-如果代码不能工作,就不能产生价值;然后再试图将它变好-通过对代码进行重构,让我们自己和其他人更好地理解代码,并能按照需求不断地修改代码。
所以我觉得是时候自我改变一下。
The Clean Architecture
在简洁架构里面对我们的项目提出了几点要求:
- 独立于框架。该架构不依赖于某些功能丰富的软件库的存在。这允许你把这些框架作为工具来使用,而不是把你的系统塞进它们有限的约束中。
- 可测试。业务规则可以在没有 UI、数据库、Web 服务器或任何其他外部元素的情况下被测试。
- 独立于用户界面。UI 可以很容易地改变,而不用改变系统的其他部分。例如,一个 Web UI 可以被替换成一个控制台 UI,而不改变业务规则。
- 独立于数据库。你可以把 Oracle 或 SQL Server 换成 Mongo、BigTable、CouchDB 或其他东西。你的业务规则不受数据库的约束。
- 独立于任何外部机构。事实上,你的业务规则根本不知道外部世界的任何情况。
上图中同心圆代表各种不同领域的软件。一般来说,越深入代表你的软件层次越高。外圆是战术实现机制,内圆的是战略核心策略。对于我们的项目来说,代码依赖应该由外向内,单向单层依赖,这种依赖包含代码名称,或类的函数,变量或任何其他命名软件实体。
对于简洁架构来说分为了四层:
- Entities:实体
- Usecase:表达应用业务规则,对应的是应用层,它封装和实现系统的所有用例;
- Interface Adapters:这一层的软件基本都是一些适配器,主要用于将用例和实体中的数据转换为外部系统如数据库或 Web 使用的数据;
- Framework & Driver:最外面一圈通常是由一些框架和工具组成,如数据库 Database, Web 框架等;
那么对于我的项目来说,也分为了四层:
- models
- repo
- service
- api
代码分层
models
封装了各种实体类对象,与数据库交互的、与 UI 交互的等等,任何的实体类都应该放在这里。如:
import "time"
type Article struct {
ID int64 `json:"id"`
Title string `json:"title"`
Content string `json:"content"`
UpdatedAt time.Time `json:"updated_at"`
CreatedAt time.Time `json:"created_at"`
}
repo
这里存放的是数据库操作类,数据库 CRUD 都在这里。需要注意的是,这里不包含任何的业务逻辑代码,很多同学喜欢将业务逻辑也放到这里。
如果使用 ORM,那么这里放入的 ORM 操作相关的代码;如果使用微服务,那么这里放的是其他服务请求的代码;
service
这里是业务逻辑层,所有的业务过程处理代码都应该放在这里。这一层会决定是请求 repo 层的什么代码,是操作数据库还是调用其他服务;所有的业务数据计算也应该放在这里;这里接受的入参应该是 controller 传入的。
api
这里是接收外部请求的代码,如:gin 对应的 handler、gRPC、其他 REST API 框架接入层等等。
面向接口编程
除了 models 层,层与层之间应该通过接口交互,而不是实现。如果要用 service 调用 repo 层,那么应该调用 repo 的接口。那么修改底层实现的时候我们上层的基类不需要变更,只需要更换一下底层实现即可。
例如我们想要将所有文章查询出来,那么可以在 repo 提供这样的接口:
package repo
import (
"context"
"my-clean-rchitecture/models"
"time"
)
// IArticleRepo represent the article's repository contract
type IArticleRepo interface {
Fetch(ctx context.Context, createdDate time.Time, num int) (res []models.Article, err error)
}
这个接口的实现类就可以根据需求变更,比如说当我们想要 mysql 来作为存储查询,那么只需要提供一个这样的基类:
type mysqlArticleRepository struct {
DB *gorm.DB
}
// NewMysqlArticleRepository will create an object that represent the article.Repository interface
func NewMysqlArticleRepository(DB *gorm.DB) IArticleRepo {
return &mysqlArticleRepository{DB}
}
func (m *mysqlArticleRepository) Fetch(ctx context.Context, createdDate time.Time,
num int) (res []models.Article, err error) {
err = m.DB.WithContext(ctx).Model(&models.Article{}).
Select("id,title,content, updated_at, created_at").
Where("created_at > ?", createdDate).Limit(num).Find(&res).Error
return
}
如果改天想要换成 MongoDB 来实现我们的存储,那么只需要定义一个结构体实现 IArticleRepo 接口即可。
那么在 service 层实现的时候就可以按照我们的需求来将对应的 repo 实现注入即可,从而不需要改动 service 层的实现:
type articleService struct {
articleRepo repo.IArticleRepo
}
// NewArticleService will create new an articleUsecase object representation of domain.ArticleUsecase interface
func NewArticleService(a repo.IArticleRepo) IArticleService {
return &articleService{
articleRepo: a,
}
}
// Fetch
func (a *articleService) Fetch(ctx context.Context, createdDate time.Time, num int) (res []models.Article, err error) {
if num == 0 {
num = 10
}
res, err = a.articleRepo.Fetch(ctx, createdDate, num)
if err != nil {
return nil, err
}
return
}
依赖注入 DI
依赖注入,英文名 dependency injection,简称 DI 。DI 以前在 java 工程里面经常遇到,但是在 go 里面很多人都说不需要,但是我觉得在大型软件开发过程中还是有必要的,否则只能通过全局变量或者方法参数来进行传递。
至于具体什么是 DI,简单来说就是被依赖的模块,在创建模块时,被注入到(即当作参数传入)模块的里面。想要更加深入的了解什么是 DI 这里再推荐一下 Dependency injection 和 Inversion of Control Containers and the Dependency Injection pattern 这两篇文章。
如果不用 DI 主要有两大不方便的地方,一个是底层类的修改需要修改上层类,在大型软件开发过程中基类是很多的,一条链路改下来动辄要修改几十个文件;另一方面就是就是层与层之间单元测试不太方便。
因为采用了依赖注入,在初始化的过程中就不可避免的会写大量的 new,比如我们的项目中需要这样:
package main
import (
"my-clean-rchitecture/api"
"my-clean-rchitecture/api/handlers"
"my-clean-rchitecture/app"
"my-clean-rchitecture/repo"
"my-clean-rchitecture/service"
)
func main() {
// 初始化db
db := app.InitDB()
//初始化 repo
repository := repo.NewMysqlArticleRepository(db)
//初始化service
articleService := service.NewArticleService(repository)
//初始化api
handler := handlers.NewArticleHandler(articleService)
//初始化router
router := api.NewRouter(handler)
//初始化gin
engine := app.NewGinEngine()
//初始化server
server := app.NewServer(engine, router)
//启动
server.Start()
}
那么对于这么一段代码,我们有没有办法不用自己写呢?这里我们就可以借助框架的力量来生成我们的注入代码。
在 go 里面 DI 的工具相对来说没有 java 这么方便,技术框架一般主要有:wire、dig、fx 等。由于 wire 是使用代码生成来进行注入,性能会比较高,并且它是 google 推出的 DI 框架,所以我们这里使用 wire 进行注入。
wire 的要求很简单,新建一个 wire.go 文件(文件名可以随意),创建我们的初始化函数。比如,我们要创建并初始化一个 server 对象,我们就可以这样:
//+build wireinject
package main
import (
"github.com/google/wire"
"my-clean-rchitecture/api"
"my-clean-rchitecture/api/handlers"
"my-clean-rchitecture/app"
"my-clean-rchitecture/repo"
"my-clean-rchitecture/service"
)
func InitServer() *app.Server {
wire.Build(
app.InitDB,
repo.NewMysqlArticleRepository,
service.NewArticleService,
handlers.NewArticleHandler,
api.NewRouter,
app.NewServer,
app.NewGinEngine)
return &app.Server{}
}
需要注意的是,第一行的注解:+build wireinject,表示这是一个注入器。
在函数中,我们调用wire.Build()将创建 Server 所依赖的类型的构造器传进去。写完 wire.go 文件之后执行 wire 命令,就会自动生成一个 wire_gen.go 文件。
// Code generated by Wire. DO NOT EDIT.
//go:generate go run github.com/google/wire/cmd/wire
//+build !wireinject
package main
import (
"my-clean-rchitecture/api"
"my-clean-rchitecture/api/handlers"
"my-clean-rchitecture/app"
"my-clean-rchitecture/repo"
"my-clean-rchitecture/service"
)
// Injectors from wire.go:
func InitServer() *app.Server {
engine := app.NewGinEngine()
db := app.InitDB()
iArticleRepo := repo.NewMysqlArticleRepository(db)
iArticleService := service.NewArticleService(iArticleRepo)
articleHandler := handlers.NewArticleHandler(iArticleService)
router := api.NewRouter(articleHandler)
server := app.NewServer(engine, router)
return server
}
可以看到 wire 自动帮我们生成了 InitServer 方法,此方法中依次初始化了所有要初始化的基类。之后在我们的 main 函数中就只需调用这个 InitServer 即可。
func main() {
server := InitServer()
server.Start()
}
测试
在上面我们定义好了每一层应该做什么,那么对于每一层我们应该都是可单独测试的,即使另外一层不存在。
- models 层:这一层就很简单了,由于没有依赖任何其他代码,所以可以直接用 go 的单测框架直接测试即可;
- repo 层:对于这一层来说,由于我们使用了 mysql 数据库,那么我们需要 mock mysql,这样即使不用连 mysql 也可以正常测试,我这里使用 github.com/DATA-DOG/go-sqlmock 这个库来 mock 我们的数据库;
- service 层:因为 service 层依赖了 repo 层,因为它们之间是通过接口来关联,所以我这里使用 github.com/golang/mock/gomock 来 mock repo 层;
- api 层:这一层依赖 service 层,并且它们之间是通过接口来关联,所以这里也可以使用 gomock 来 mock service 层。不过这里稍微麻烦了一点,因为我们接入层用的是 gin,所以还需要在单测的时候模拟发送请求;
由于我们是通过 github.com/golang/mock/gomock 来进行 mock ,所以需要执行一下代码生成,生成的 mock 代码我们放入到 mock 包中:
mockgen -destination .\mock\repo_mock.go -source .\repo\repo.go -package mock
mockgen -destination .\mock\service_mock.go -source .\service\service.go -package mock
上面这两个命令会通过接口帮我自动生成 mock 函数。
repo 层测试
在项目中,由于我们用了 gorm 来作为我们的 orm 库,所以我们需要使用 github.com/DATA-DOG/go-sqlmock 结合 gorm 来进行 mock:
func getSqlMock() (mock sqlmock.Sqlmock, gormDB *gorm.DB) {
//创建sqlmock
var err error
var db *sql.DB
db, mock, err = sqlmock.New(sqlmock.QueryMatcherOption(sqlmock.QueryMatcherEqual))
if err != nil {
panic(err)
}
//结合gorm、sqlmock
gormDB, err = gorm.Open(mysql.New(mysql.Config{
SkipInitializeWithVersion: true,
Conn: db,
}), &gorm.Config{})
if nil != err {
log.Fatalf("Init DB with sqlmock failed, err %v", err)
}
return
}
func Test_mysqlArticleRepository_Fetch(t *testing.T) {
createAt := time.Now()
updateAt := time.Now()
//id,title,content, updated_at, created_at
var articles = []models.Article{
{1, "test1", "content", updateAt, createAt},
{2, "test2", "content2", updateAt, createAt},
}
limit := 2
mock, db := getSqlMock()
mock.ExpectQuery("SELECT id,title,content, updated_at, created_at FROM `articles` WHERE created_at > ? LIMIT 2").
WithArgs(createAt).
WillReturnRows(sqlmock.NewRows([]string{"id", "title", "content", "updated_at", "created_at"}).
AddRow(articles[0].ID, articles[0].Title, articles[0].Content, articles[0].UpdatedAt, articles[0].CreatedAt).
AddRow(articles[1].ID, articles[1].Title, articles[1].Content, articles[1].UpdatedAt, articles[1].CreatedAt))
repository := NewMysqlArticleRepository(db)
result, err := repository.Fetch(context.TODO(), createAt, limit)
assert.Nil(t, err)
assert.Equal(t, articles, result)
}
service 层测试
这里主要就是用我们 gomock 生成的代码来 mock repo 层:
func Test_articleService_Fetch(t *testing.T) {
ctl := gomock.NewController(t)
defer ctl.Finish()
now := time.Now()
mockRepo := mock.NewMockIArticleRepo(ctl)
gomock.InOrder(
mockRepo.EXPECT().Fetch(context.TODO(), now, 10).Return(nil, nil),
)
service := NewArticleService(mockRepo)
fetch, _ := service.Fetch(context.TODO(), now, 10)
fmt.Println(fetch)
}
api 层测试
对于这一层,我们不仅要 mock service 层,还需要发送 httptest 来模拟请求发送:
func TestArticleHandler_FetchArticle(t *testing.T) {
ctl := gomock.NewController(t)
defer ctl.Finish()
createAt, _ := time.Parse("2006-01-02", "2021-12-26")
mockService := mock.NewMockIArticleService(ctl)
gomock.InOrder(
mockService.EXPECT().Fetch(gomock.Any(), createAt, 10).Return(nil, nil),
)
article := NewArticleHandler(mockService)
gin.SetMode(gin.TestMode)
// Setup your router, just like you did in your main function, and
// register your routes
r := gin.Default()
r.GET("/articles", article.FetchArticle)
req, err := http.NewRequest(http.MethodGet, "/articles?num=10&create_date=2021-12-26", nil)
if err != nil {
t.Fatalf("Couldn't create request: %v\n", err)
}
w := httptest.NewRecorder()
// Perform the request
r.ServeHTTP(w, req)
// Check to see if the response was what you expected
if w.Code != http.StatusOK {
t.Fatalf("Expected to get status %d but instead got %d\n", http.StatusOK, w.Code)
}
}
总结
以上就是我对 golang 的项目中发现问题的一点点总结与思考,思考的先不管对不对,总归是解决了我们当下的一些问题。不过,项目总归是需要不断重构完善的,所以下次有问题的时候下次再改呗。
对于我上面的总结和描述感觉有不对的地方,请随时指出来一起讨论。
项目代码位置:https://github.com/devYun/go-clean-architecture
Reference
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://github.com/bxcodec/go-clean-arch
https://medium.com/hackernoon/golang-clean-archithecture-efd6d7c43047
https://farer.org/2021/04/21/go-dependency-injection-wire/
相关推荐
- go-admin开源项目,快速搭建一个管理后台系统,直接二次开发上线
-
#头条创作挑战赛#目录1,关于go-admin2,使用go-admin进行构建3,使用go-admin进行数据库,后端初始化4,下载前端代码,进行node编译5,总结1,关于go-admingithu...
- 【开源】一款高效优雅的 Vite+Vue3 中后台管理模板——Arco-Admin
-
今天给大家分享一款开源的基于Vite、TypeScript和Vue3的中后台前端框架,结合了ArcoDesign提供的优雅设计与强大功能。值得一提的是,ArcoDesign是字节跳...
- 看看这样的Dotnet后台管理,那真是叫一个清新优雅高颜值!!!
-
MalusAdmin基于Vue3/TypeScript/NaiveUI和NET7&Sqlsugar开发的后台管理框架。采用最原生最简洁的方式来实现,前端清新优雅高颜值,后端结...
- NET 7 + Vue.js 的前后端分离的通用后台管理系统框架
-
DncZeus项目简介DncZeus是一个基于.NET7+Vue.js的前后端分离的通用后台管理系统框架。后端使用.NET7+EntityFrameworkCore构建,UI则...
- 后台管理系统这么受欢迎吗?又 Go 一个开源项目
-
大家好,我是欧盆索思(opensource),每天为你带来优秀的开源项目!之前推荐过两款后台管理系统,都是Go语言实现的。十分钟内构建数据可视化和管理后台:还同时支持众多框架基于Go语言Gi...
- 支持AI + 低代码!一款开箱即用的强大权限管理系统
-
写在前面大家好,这里是IT学习日记。今日推荐项目:cool-admin,获取方式在文后!1000+优质开源项目推荐进度:51/1000。如需更多类型优质项目推荐,请在文章后留言。项目简介如果你在为设计...
- 使用 Flask-Admin 快速开发博客后台管理系统:关键要点解析
-
一、为什么选择Flask-Admin?Flask-Admin是Flask生态中高效的后台管理框架,核心优势在于:-零代码生成CRUD界面:基于数据库模型自动生成增删改查功能-高度可定制...
- 通用后台管理系统需求及原型设计(后台管理系统需求分析)
-
编辑导读:后台管理系统,会根据不同公司、不同业务的要求做出改变。那么,有没有通用的功能和和需求设计模版呢?有的。本文作者基于自身工作经验,总结了一套通用的后台管理系统需求及原型设计,与你分享。网上很多...
- 基于 Vue3 后台管理平台Vue3.x-Admin
-
今天给大家分享一个Vue3.0框架搭建的后台管理模板Vue3.xAdmin。vue3.x-admin使用vue3开发的后台管理系统。主要包括CSS3特效、可拖拽的div、图表、益智小游戏、vuex4...
- 火爆全网:后台管理系统源码分享(项目部署+前后端手册+运维)
-
这是一款基于SpringBoot2.1.0、Jpa、SpringSecurity、redis、Vue的前后端分离的后台管理系统,项目采用分模块开发方式,权限控制采用RBAC,支持数...
- 好多程序员都在用的通用管理后台—likeadmin
-
前言作为一个程序员,最害怕的就是每次开新项目时,总是要从用户、角色、菜单、接口等一系列功能从头开始写代码,重复的工作实在是太多了,即耗费时间,又耗费精力,这个时候就需要一些能提高效率的工具,例如一个通...
- Axure无限级导航菜单(axure导航栏左右滑动怎么做)
-
在Axure设计中,树组件是展示层级结构数据的关键UI组件,广泛应用于文件管理、导航菜单和数据分类等场景。本篇文章将详细解析如何在Axure中构建一个实用的无限级导航菜单,帮助你高效管理和...
- 三星调整HBM团队组织架构 押宝定制化HBM
-
【三星调整HBM团队组织架构押宝定制化HBM】《科创板日报》27日讯,消息称,三星电子DS(设备解决方案)部门负责人全永铉正在进行内部组织大幅调整。他将三星HBM开发团队细分为标准HBM、定制化HB...
- 北森组织架构一览(北森总部地址)
-
北森的职级组织架构和职级名称都很有意思。可以作为企业参考。1)培养路径:森小白(BeisenNewcomer):新入职员工。森小贤(BeisenSage):L1层级森大侠(BeisenWarri...
- 高手正在使用的四个PLC编程思路,吃透让你少走20年弯路
-
在工业自动化领域,PLC(可编程逻辑控制器)编程是核心技能之一。掌握高效的编程思路不仅能提升工作效率,还能减少调试过程中的错误。以下是四条经过PLC工程师实践检验的编程思路,理解并运用这些思路可以让你...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- go-admin开源项目,快速搭建一个管理后台系统,直接二次开发上线
- 【开源】一款高效优雅的 Vite+Vue3 中后台管理模板——Arco-Admin
- 看看这样的Dotnet后台管理,那真是叫一个清新优雅高颜值!!!
- NET 7 + Vue.js 的前后端分离的通用后台管理系统框架
- 后台管理系统这么受欢迎吗?又 Go 一个开源项目
- 支持AI + 低代码!一款开箱即用的强大权限管理系统
- 使用 Flask-Admin 快速开发博客后台管理系统:关键要点解析
- 通用后台管理系统需求及原型设计(后台管理系统需求分析)
- 基于 Vue3 后台管理平台Vue3.x-Admin
- 火爆全网:后台管理系统源码分享(项目部署+前后端手册+运维)
- 标签列表
-
- MVC框架 (46)
- spring框架 (46)
- 框架图 (58)
- flask框架 (53)
- quartz框架 (51)
- abp框架 (47)
- jpa框架 (47)
- laravel框架 (46)
- springmvc框架 (49)
- 分布式事务框架 (65)
- scrapy框架 (56)
- shiro框架 (61)
- 定时任务框架 (56)
- java日志框架 (61)
- JAVA集合框架 (47)
- grpc框架 (55)
- ppt框架 (48)
- 内联框架 (52)
- winform框架 (46)
- gui框架 (44)
- cad怎么画框架 (58)
- ps怎么画框架 (47)
- ssm框架实现登录注册 (49)
- oracle字符串长度 (48)
- oracle提交事务 (47)