百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

软件测试/测试开发丨流程封装与基于加密接口的测试用例设计

ccwgpt 2024-10-03 18:47 67 浏览 0 评论

公众号搜索:TestingStudio 霍格沃兹测试开发的干货都很硬核

接口测试仅仅掌握 Requests 或者其他一些功能强大的库的用法,是远远不够的,还需要具备能根据公司的业务流程以及需求去定制化一个接口自动化测试框架的能力。所以,接下来,我们主要介绍下接口测试用例分析以及通用的流程封装是如何完成的。

接口测试用例分析

首先在做用例分析之前,可以通过追查公司一年来所有的故障原因,定位问题起因,或者通过与 CTO、产品经理、研发、运维、测试调查,得到质量痛点,还可以分析业务架构、流程调用,以及监控系统了解到业务的使用数据,从而得到质量需求

得到质量需求之后,通过与产品经理、项目经理、研发总监等对接后得知待测业务范围、业务场景用例、业务接口分析,从而确定公司的测试计划。将测试计划与质量需求结合进行分析,就可以开始进行业务用例的设计,而接口测试用例分析,也在其内。

质量需求

样例

测试痛点

公司的接口一直不稳定影响用户的使用

质量反馈

最近半年来出现了几次大的故障

回归测试

每次升级都会影响老的功能

测试策略

目前公司没有可靠的测试体系

重构测试

微服务话改造需要有良好的测试体系保证

接口测试封装思想

接口封装思想主要分为 3 个大维度:配置、接口封装、业务流程。其中:

  • 配置主要用作根据配置文件获取初始配置和依赖;
  • 接口封装遵循 APIObject 设计模式,对接口的调用进行抽象封装;
  • 业务流程则负责数据初始化、业务用例设计,包含有多个 API 形成的流程定义,不要再包含任何接口实现细节、以及断言。

下面将会与实战案例结合,进行详细的介绍。

基于加密接口的测试用例设计

由于信息安全原因,许多接口在传输的时候会对请求与响应进行加密处理,如果直接对这部分数据做断言显然是行不通的。还需要对这部分接口额外进行解密的处理之后,才可以对已解密的接口进行断言。

环境准备

在进行实战之前,需要先准备一个对响应加密的接口。对它发起一个 get 请求后,得到一个加密过后的响应信息。

先准备一个 JSON 格式 demo:

{"topics":
{
"orange":"movie",
"shool":"testing-studio",
"president":"seveniruby"
}
}

使用 base64 对其做加密,得到一个加密后的文件 demo64.txt

base64 demo.json >demo64.txt

使用 Python 命令在 “demo64.txt” 所在目录启动一个服务

python -m http.server 10000

启动后的样子如图:

使用curl命令对这个服务进行get请求:

curl http://127.0.0.1:10000/demo64.txt

如果请求成功的话就代表环境已经准备成功

实战练习

调用 base64,直接对返回的请求做解密,即可得到解密后的响应,将解密后的响应转为 JSON 格式,此时就可以对这个返回值做断言且不会报错了。

import base64
import json
import requests
class TestEncode:
    url = "http://127.0.0.1:10000/demo64.txt"
    def test_encode(self):
        r = requests.get(self.url)
        encode = json.loads(base64.b64decode(r.content))
        assert encode["topics"]["president"] == "seveniruby"

这样的写法显然不够优雅,如果被测接口的协议发生变化,Requests 库无法支持改变后的协议,需要调用别的第三库发送请求信息,则还是需要修改底层的源码。碰到这种情况,可以增加一层封装,构造一层更加通用的发送方法。

首先需要通过一个字典的结构体,保存所有的请求信息,包括发送的协议、解码方式、请求 method 等等,而这种字典形式的结构体也为后面的数据驱动改造做好了一个重要的铺垫。

 req_data={
            "schema": "http",
            "method": "get",
            "url": "http://127.0.0.1:10000/demo64.txt",
            "headers": None
        }

通过请求信息的结构体中的schema,添加判断条件,去选择不同的请求协议。举个例子,如果 schema 为“http”的话,就选择调用被封装的 requests 库。

class ApiRequest:
    #构造send方法,通过
    def send(self, data: dict):
        if "http" == data["schema"] :
            res = requests.request(data["method"],data["url"],header=data["headers"])
            return json.loads(base64.decode(res.content))
        elif "dubbo" ==  data["schema"]:
            pass
        elif "websocket" == data["schema"]:
            pass
        else:
            pass        

调用在ApiRequest类中的send方法发送请求并进行断言

class TestEncode:
   def test_api(self):
        req_data={
            "schema": "http",
            "encoding": "base64",
            "method": "get",
            "url": "http://127.0.0.1:10000/demo64.txt",
            "headers": None
        }
        re = ApiRequest()
        data = re.send(req_data)
        assert data["topics"]["president"] == "seveniruby"

如果面对不同的算法,还需要修改底层的源码,所以需要把算法封装。需要使用哪个算法,就使用哪个。封装的思想与上面相同。首先在字典结构体中添加一个 encoding 字段,用来判断选择的不同的加密条件。

 req_data={
            "schema": "http",
            "method": "get",
            "url": "http://127.0.0.1:10000/demo64.txt",
            "headers": None,
            "encoding": "base64"
        }

还是通过请求信息的结构体中的 encoding,添加判断条件,去选择不同的解密方式。

class ApiRequest:
    def send(self, data: dict):
        if "http" == data["schema"] :
            res = requests.request(data["method"],data["url"],headers=data["headers"])
            return json.loads(base64.b64decode(res.content))
            #通过请求信息的结构体中的`encoding`,去选择不同的解密方式。
            if data["encoding"] == "base64":
                return json.loads(base64.b64decode(res.content))
            elif data["encoding"] == "private":
                return json.loads(requests.post("url", data=res.content).content)
            else:
                return json.loads(res.content)

总结

首先需要明确在面对一个加密的响应结果,可以使用什么样的处理方式:

  1. 如果知道使用的是哪个通用加密算法的话,可以自行解决。
  2. 如果不了解对应的加密算法的话,可以让研发提供加解密的 lib。
  3. 如果既不是通用加密算法、研发也无法提供加解密的 lib 的话,可以让加密方提供远程解析服务,这样算法仍然是保密的。

本文主要讲的是在了解使用加密算法的情况下,如何处理这样的解密算法。但是封装的思路都是相通的,不管是面对哪种情况,都可以通过格式化的数据,指明数据的内容,并通过一层逻辑的封装,将加解密或者选择的协议封装进去。

相关推荐

自己动手写Android数据库框架_android开发数据库搭建

http://blog.csdn.net/feiduclear_up/article/details/50557590推荐理由关于Android数据库操作,由于每次都要自己写数据库操作,每次还得去...

谷歌开源大模型评测工具LMEval,打通谷歌、OpenAI、Anthropic

智东西编译|金碧辉编辑|程茜智东西5月28日消息,据科技媒体TheDecoder5月26日报道,当天,谷歌正式发布开源大模型评测框架LMEval,支持对GPT-4o、Claude3.7...

工信部:着力推动大模型算法、框架等基础性原创性的技术突破

工信部新闻发言人今日在发布会上表示,下一步,我们将坚持突出重点领域,大力推动制造业数字化转型,推动人工智能创新应用。主要从以下四个方面着力。一是夯实人工智能技术底座。通过科技创新重大项目,着力推动大模...

乒乓反复纠结“框架不稳定”的三个小误区

很多球友由于对框架的认知不清晰,往往会把“框架不稳定”当成一种心理负担,从而影响学球进度,其典型状态就是训练中有模有样,一旦进入实战,就像被捆住了手脚。通过训练和学习,结合“基本功打卡群”球友们交流发...

前AMD、英特尔显卡架构师Raja再战GPU,号称要全面重构堆栈

IT之家8月5日消息,知名GPU架构师拉贾科杜里(RajaKoduri)此前曾先后在AMD和英特尔的显卡部门担任要职。而在今日,由Raja创立的GPU软件与IP初创企...

三种必须掌握的嵌入式开发程序架构

前言在嵌入式软件开发,包括单片机开发中,软件架构对于开发人员是一个必须认真考虑的问题。软件架构对于系统整体的稳定性和可靠性是非常重要的,一个合适的软件架构不仅结构清晰,并且便于开发。我相...

怪不得别人3秒就知道软考案例怎么做能50+

软考高级统一合格标准必须三科都达到45分,案例分析也一直是考生头疼的一门,但是掌握到得分点,案例能不能50+还不是你们说了算吗?今天就结合架构案例考点,分享实用的备考攻略~一、吃透考点,搭建知识框架从...

UML统一建模常用图有哪些,各自的作用是什么?一篇文章彻底讲透

10万+爆款解析:9大UML图实战案例,小白也能秒懂!为什么需要UML?UML(统一建模语言)是软件开发的“蓝图”,用图形化语言描述系统结构、行为和交互,让复杂需求一目了然。它能:降低沟通成本避...

勒索软件转向云原生架构,直指备份基础设施

勒索软件组织和其他网络犯罪分子正越来越多地将目标对准基于云的备份系统,对久已确立的灾难恢复方法构成了挑战。谷歌安全研究人员在一份关于云安全威胁演变的报告中警告称,随着攻击者不断改进数据窃取、身份泄露和...

ConceptDraw DIAGRAM:释放创意,绘就高效办公新未来

在当今数字化时代,可视化工具已成为提升工作效率和激发创意的关键。ConceptDrawDIAGRAM,作为一款世界顶级的商业绘图软件,凭借其强大的功能和用户友好的界面,正逐渐成为众多专业人士的首选绘...

APP 制作界面设计教程:一步到位_app界面设计模板一套

想让APP界面设计高效落地,无需繁琐流程,掌握“框架搭建—细节填充—体验优化”三步法,即可一步到位完成专业级设计。黄金框架搭建是基础。采用“三三制布局”:将屏幕横向三等分,纵向保留三...

MCP 的工作原理:关键组件_mcp部件

以下是MCP架构的关键组件:MCP主机:像ClaudeDesktop、GitHubCopilot或旅行助手这样的AI智能体,它们希望通过MCP协议访问工具、资源等。MCP主机会...

软件架构_软件架构师工资一般多少

软件架构师自身需要是程序员,并且必须一直坚持做一线程序员。软件架构应该是能力最强的一群程序员,他们通常会在自身承接编程任务的同时,逐渐引导整个团队向一个能够最大化生产力的系统设计方向前进。软件系统的架...

不知不觉将手机字体调大!老花眼是因为“老了吗”?

现在不管是联系、交友,还是购物,都离不开手机。中老年人使用手机的时间也在逐渐加长,刷抖音、看短视频、发朋友圈……看手机的同时,人们也不得不面对“视力危机”——老花眼,习惯眯眼看、凑近看、瞪眼看,不少人...

8000通用汉字学习系列讲座(第046讲)

[表声母字]加(续)[从声汉字]伽茄泇迦枷痂袈笳嘉驾架咖贺瘸(计14字)嘉[正音]标准音读jiā。[辨形]上下结构,十四画。会意形声字,从壴从加,加也表声。注:从壴,字义与鼓乐有关;从加,字义与...

取消回复欢迎 发表评论: