DeepMind 推出分布式训练框架 IMPALA,开启智能体训练新时代
ccwgpt 2024-10-04 13:44 36 浏览 0 评论
雷锋网 AI 研习社按,日前,DeepMind 推出一种全新的分布式智能体训练框架 IMPALA,该框架具有高度可扩展性,将学习和执行过程分开,使用了一种名为 V-trace 的离策略(off-policy)修正算法,具有显著的加速性能,极高的效率。具体如何呢,雷锋网 AI 研习社将其原文编译整理如下:
深度强化学习 (DeepRL) 在一系列任务中取得很显著的成果,比如机器人的连续控制问题、玩围棋和 Atari 等游戏。目前为止,我们看到的这些成果仅限于单一任务,每个任务都要单独对智能体进行调参和训练。
在我们最近的工作中,研究了在多个任务中训练单个智能体。
今天我们发布 DMLab-30,这是一组横跨很多挑战的新任务,在视觉统一的环境中,有着普通的行动空间(action space)。想训练好一个在许多任务上都有良好表现的智能体,需要大量的吞吐量,有效利用每个数据点。
为此,我们开发了一种全新的、高度可扩展的分布式智能体训练框架 IMPALA(重点加权行动-学习器框架,Importances Weighted Actor-Learner Architectures),这种框架使用了一种名为 V-trace 的离策略(off-policy)修正算法。
DMLab-30
DMLab-30 是通过开源强化学习环境 DeepMind Lab设计的一系列新任务。有了 DMLab-30,任何深度强化学习研究人员都能够在大范围的、有趣的任务中测试系统,支持单独测试、多任务环境测试。
这些任务被设计得尽可能多样化。它们有着不同的目标,有的是学习,有的是记忆,有的则是导航。它们的视觉效果也各不相同,比如有的是色彩鲜艳、现代风格的纹理,有的是黎明、正午或夜晚的沙漠中微妙的棕色和绿色。环境设置也不同,从开阔的山区,到直角迷宫,再到开放的圆房间,这里都存在。
此外,一些环境中还有「机器人」,这些机器人会执行以目标为导向的行为。同样重要的是,任务不同,目标和奖励也会有所不同,比如遵循语言指令、使用钥匙开门、采摘蘑菇、绘制和跟踪一条复杂的不能回头的路径这些任务,最终目的和奖励都会有所不同。
但是,就行动空间和观察空间来说,任务的环境是一样的。可以在每个环境中对智能体进行训练。在 DMLab 的 GitHub页面上可以找到更多关于训练环境的细节。
IMPALA::重点加权行动-学习器框架
为了在 DMLab-30 中训练那些具有挑战性的任务,我们开发了一个名为 IMPALA 的分布式智能体框架,它利用 TensorFlow 中高效的分布式框架来最大化数据吞吐量。
IMPALA 的灵感来自流行的 A3C框架,后者使用多个分布式 actor 来学习智能体的参数。
在这样的模型中,每个 actor 都使用策略参数的克隆在环境中行动。actor 会周期性地暂停探索来共享梯度,这些梯度是用一个中央参数服务器来计算的,会实时更新(见下图)。
另一方面,在 IMPALA 中,不会用 actor 来计算梯度。它们只是用来收集经验,这些经验会传递给计算梯度的中央学习器,从而得到一个拥有独立 actor 和 learner 的模型。
现代计算系统有诸多优势,IMPALA 可以利用其优势,用单个 learner 或多个 learner 进行同步更新。以这种方式将学习和行动分离,有助于提高整个系统的吞吐量,因为 actor 不再需要执行诸如Batched A2C 框架中的等待学习步骤。
这使我们在环境中训练 IMPALA 时不会受到框架渲染时间的变动或任务重新启动时间的影响。
IMPALA 中的学习是连续的,不同于其他框架,每一步学习都要暂停
然而,将行动与学习分离会导致 actor 中的策略落后于 learner。为了弥补这一差异,我们引入 V-trace——条理化的离策略 actor critic 算法,它可以对 actor 落后的轨迹进行补偿。可以在我们的论文 IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures中看到该算法的具体细节。
IMPALA 中的优化模型相对于类似智能体,能多处理 1 到 2 个数量级的经验,这使得在极具挑战的环境中进行学习成为可能。
我们将 IMPALA 与几个流行的 actor-critic 的方法进行了比较,发现它具有显著的加速效果。此外,使用 IMPALA 的情况下,随着 actor 和 learner 的增长,吞吐量几乎是按线性增长的。这表明,分布式智能体模型和 V-trace 算法都能支持极大规模的实验,支持的规模甚至可以达到上千台机器。
当在 DMLab-30 上进行测试时,与 A3C 相比,IMPALA 的数据效率提高了 10 倍,最终得分达到后者的两倍。此外,与单任务训练相比,IMPALA 在多任务环境下的训练呈正迁移趋势。
IMPALA 论文地址:https://arxiv.org/abs/1802.01561
DMLab-30 GitHub地址:https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30
via:DeepMind Blog
雷锋网 AI 研习社编译整理
相关推荐
- 十分钟让你学会LNMP架构负载均衡(impala负载均衡)
-
业务架构、应用架构、数据架构和技术架构一、几个基本概念1、pv值pv值(pageviews):页面的浏览量概念:一个网站的所有页面,在一天内,被浏览的总次数。(大型网站通常是上千万的级别)2、u...
- AGV仓储机器人调度系统架构(agv物流机器人)
-
系统架构层次划分采用分层模块化设计,分为以下五层:1.1用户接口层功能:提供人机交互界面(Web/桌面端),支持任务下发、实时监控、数据可视化和报警管理。模块:任务管理面板:接收订单(如拣货、...
- 远程热部署在美团的落地实践(远程热点是什么意思)
-
Sonic是美团内部研发设计的一款用于热部署的IDEA插件,本文其实现原理及落地的一些技术细节。在阅读本文之前,建议大家先熟悉一下Spring源码、SpringMVC源码、SpringBoot...
- springboot搭建xxl-job(分布式任务调度系统)
-
一、部署xxl-job服务端下载xxl-job源码:https://gitee.com/xuxueli0323/xxl-job二、导入项目、创建xxl_job数据库、修改配置文件为自己的数据库三、启动...
- 大模型:使用vLLM和Ray分布式部署推理应用
-
一、vLLM:面向大模型的高效推理框架1.核心特点专为推理优化:专注于大模型(如GPT-3、LLaMA)的高吞吐量、低延迟推理。关键技术:PagedAttention:类似操作系统内存分页管理,将K...
- 国产开源之光【分布式工作流调度系统】:DolphinScheduler
-
DolphinScheduler是一个开源的分布式工作流调度系统,旨在帮助用户以可靠、高效和可扩展的方式管理和调度大规模的数据处理工作流。它支持以图形化方式定义和管理工作流,提供了丰富的调度功能和监控...
- 简单可靠高效的分布式任务队列系统
-
#记录我的2024#大家好,又见面了,我是GitHub精选君!背景介绍在系统访问量逐渐增大,高并发、分布式系统成为了企业技术架构升级的必由之路。在这样的背景下,异步任务队列扮演着至关重要的角色,...
- 虚拟服务器之间如何分布式运行?(虚拟服务器部署)
-
在云计算和虚拟化技术快速发展的今天,传统“单机单任务”的服务器架构早已难以满足现代业务对高并发、高可用、弹性伸缩和容错容灾的严苛要求。分布式系统应运而生,并成为支撑各类互联网平台、企业信息系统和A...
- 一文掌握 XXL-Job 的 6 大核心组件
-
XXL-Job是一个分布式任务调度平台,其核心组件主要包括以下部分,各组件相互协作实现高效的任务调度与管理:1.调度注册中心(RegistryCenter)作用:负责管理调度器(Schedule...
- 京东大佬问我,SpringBoot中如何做延迟队列?单机与分布式如何做?
-
京东大佬问我,SpringBoot中如何做延迟队列?单机如何做?分布式如何做呢?并给出案例与代码分析。嗯,用户问的是在SpringBoot中如何实现延迟队列,单机和分布式环境下分别怎么做。这个问题其实...
- 企业级项目组件选型(一)分布式任务调度平台
-
官网地址:https://www.xuxueli.com/xxl-job/能力介绍架构图安全性为提升系统安全性,调度中心和执行器进行安全性校验,双方AccessToken匹配才允许通讯;调度中心和执...
- python多进程的分布式任务调度应用场景及示例
-
多进程的分布式任务调度可以应用于以下场景:分布式爬虫:importmultiprocessingimportrequestsdefcrawl(url):response=re...
- SpringBoot整合ElasticJob实现分布式任务调度
-
介绍ElasticJob是面向互联网生态和海量任务的分布式调度解决方案,由两个相互独立的子项目ElasticJob-Lite和ElasticJob-Cloud组成。它通过弹性调度、资源管控、...
- 分布式可视化 DAG 任务调度系统 Taier 的整体流程分析
-
Taier作为袋鼠云的开源项目之一,是一个分布式可视化的DAG任务调度系统。旨在降低ETL开发成本,提高大数据平台稳定性,让大数据开发人员可以在Taier直接进行业务逻辑的开发,而不用关...
- SpringBoot任务调度:@Scheduled与TaskExecutor全面解析
-
一、任务调度基础概念1.1什么是任务调度任务调度是指按照预定的时间计划或特定条件自动执行任务的过程。在现代应用开发中,任务调度扮演着至关重要的角色,它使得开发者能够自动化处理周期性任务、定时任务和异...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- MVC框架 (46)
- spring框架 (46)
- 框架图 (58)
- flask框架 (53)
- quartz框架 (51)
- abp框架 (47)
- jpa框架 (47)
- laravel框架 (46)
- springmvc框架 (49)
- 分布式事务框架 (65)
- scrapy框架 (56)
- shiro框架 (61)
- 定时任务框架 (56)
- java日志框架 (61)
- JAVA集合框架 (47)
- grpc框架 (55)
- ppt框架 (48)
- 内联框架 (52)
- winform框架 (46)
- gui框架 (44)
- cad怎么画框架 (58)
- ps怎么画框架 (47)
- ssm框架实现登录注册 (49)
- oracle字符串长度 (48)
- oracle提交事务 (47)