百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

自己动手从0开始实现一个分布式 RPC 框架

ccwgpt 2024-10-04 13:44 49 浏览 0 评论

前言

为什么要自己写一个RPC框架,我觉得从个人成长上说,如果一个程序员能清楚的了解RPC框架所具备的要素,掌握RPC框架中涉及的服务注册发现、负载均衡、序列化协议、RPC通信协议、Socket通信、异步调用、熔断降级等技术,可以全方位的提升基本素质。虽然也有相关源码,但是只看源码容易眼高手低,动手写一个才是自己真正掌握这门技术的最优路径。

一 什么是RPC

RPC(Remote Procedure Call)远程过程调用,简言之就是像调用本地方法一样调用远程服务。目前外界使用较多的有gRPC、Dubbo、Spring Cloud等。相信大家对RPC的概念都已经很熟悉了,这里不做过多介绍。

二 分布式RPC框架要素

一款分布式RPC框架离不开三个基本要素:

  • 服务提供方 Serivce Provider
  • 服务消费方 Servce Consumer
  • 注册中心 Registery

围绕上面三个基本要素可以进一步扩展服务路由、负载均衡、服务熔断降级、序列化协议、通信协议等等。

1 注册中心

主要是用来完成服务注册和发现的工作。虽然服务调用是服务消费方直接发向服务提供方的,但是现在服务都是集群部署,服务的提供者数量也是动态变化的,所以服务的地址也就无法预先确定。因此如何发现这些服务就需要一个统一注册中心来承载。

2 服务提供方(RPC服务端)

其需要对外提供服务接口,它需要在应用启动时连接注册中心,将服务名及其服务元数据发往注册中心。同时需要提供服务服务下线的机制。需要维护服务名和真正服务地址映射。服务端还需要启动Socket服务监听客户端请求。

3 服务消费方(RPC客户端)

客户端需要有从注册中心获取服务的基本能力,它需要在应用启动时,扫描依赖的RPC服务,并为其生成代理调用对象,同时从注册中心拉取服务元数据存入本地缓存,然后发起监听各服务的变动做到及时更新缓存。在发起服务调用时,通过代理调用对象,从本地缓存中获取服务地址列表,然后选择一种负载均衡策略筛选出一个目标地址发起调用。调用时会对请求数据进行序列化,并采用一种约定的通信协议进行socket通信。

三 技术选型

1 注册中心

目前成熟的注册中心有Zookeeper,Nacos,Consul,Eureka,它们的主要比较如下:

本实现中支持了两种注册中心Nacos和Zookeeper,可根据配置进行切换。

2 IO通信框架

本实现采用Netty作为底层通信框架,Netty是一个高性能事件驱动型的非阻塞的IO(NIO)框架。

3 通信协议

TCP通信过程中会根据TCP缓冲区的实际情况进行包的划分,所以在业务上认为一个完整的包可能会被TCP拆分成多个包进行发送,也有可能把多个小的包封装成一个大的数据包发送,这就是所谓的TCP粘包和拆包问题。所以需要对发送的数据包封装到一种通信协议里。

业界的主流协议的解决方案可以归纳如下:

  1. 消息定长,例如每个报文的大小为固定长度100字节,如果不够用空格补足。
  2. 在包尾特殊结束符进行分割。
  3. 将消息分为消息头和消息体,消息头中包含表示消息总长度(或者消息体长度)的字段。

很明显1,2都有些局限性,本实现采用方案3,具体协议设计如下:

+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+ 
|  BYTE  |        |        |        |        |        |        |             ........ 
+--------------------------------------------+--------+-----------------+--------+--------+--------+--------+--------+--------+-----------------+ 
|  magic | version|  type  |           content lenth           |                   content byte[]                                        |        | 
+--------+-----------------------------------------------------------------------------------------+--------------------------------------------+
  • 第一个字节是魔法数,比如我定义为0X35。
  • 第二个字节代表协议版本号,以便对协议进行扩展,使用不同的协议解析器。
  • 第三个字节是请求类型,如0代表请求1代表响应。
  • 第四个字节表示消息长度,即此四个字节后面此长度的内容是消息content。

4 序列化协议

本实现支持3种序列化协议,JavaSerializer、Protobuf及Hessian可以根据配置灵活选择。建议选用Protobuf,其序列化后码流小性能高,非常适合RPC调用,Google自家的gRPC也是用其作为通信协议。

5 负载均衡

本实现支持两种主要负载均衡策略,随机和轮询,其中他们都支持带权重的随机和轮询,其实也就是四种策略。

四 整体架构

五 实现

项目总体结构:

1 服务注册发现

Zookeeper

Zookeeper采用节点树的数据模型,类似linux文件系统,/,/node1,/node2 比较简单。

Zookeeper节点类型是Zookeeper实现很多功能的核心原理,分为持久节点临时节点、顺序节点三种类型的节点。

我们采用的是对每个服务名创建一个持久节点,服务注册时实际上就是在zookeeper中该持久节点下创建了一个临时节点,该临时节点存储了服务的IP、端口、序列化方式等。

客户端获取服务时通过获取持久节点下的临时节点列表,解析服务地址数据:

客户端监听服务变化:

Nacos

Nacos是阿里开源的微服务管理中间件,用来完成服务之间的注册发现和配置中心,相当于Spring Cloud的Eureka+Config。

不像Zookeeper需要利用提供的创建节点特性来实现注册发现,Nacos专门提供了注册发现功能,所以其使用更加方便简单。主要关注NamingService接口提供的三个方法registerInstance、getAllInstances、subscribe;registerInstance用来完成服务端服务注册,getAllInstances用来完成客户端服务获取,subscribe用来完成客户端服务变动监听,这里就不多做介绍,具体可参照实现源码。

2 服务提供方 Serivce Provider

在自动配置类OrcRpcAutoConfiguration完成注册中心和RPC启动类(RpcBootStarter)的初始化:

服务端的启动流程如下:

RPC启动(RpcBootStarter):

上面监听Spring容器初始化事件时注意,由于Spring包含多个容器,如web容器和核心容器,他们还有父子关系,为了避免重复执行注册,只处理顶层的容器即可。

3 服务消费方 Servce Consumer

服务消费方需要在应用启动完成前为依赖的服务创建好代理对象,这里有很多种方法,常见的有两种:

  • 一是在应用的Spring Context初始化完成事件时触发,扫描所有的Bean,将Bean中带有OrcRpcConsumer注解的field获取到,然后创建field类型的代理对象,创建完成后,将代理对象set给此field。后续就通过该代理对象创建服务端连接,并发起调用。
  • 二是通过Spring的BeanFactoryPostProcessor,其可以对bean的定义BeanDefinition(配置元数据)进行处理;Spring IOC会在容器实例化任何其他bean之前运行BeanFactoryPostProcessor读取BeanDefinition,可以修改这些BeanDefinition,也可以新增一些BeanDefinition。

本实现也采用第二种方式,处理流程如下:

BeanFactoryPostProcessor的主要实现:

    @Override
    public void postProcessBeanFactory(ConfigurableListableBeanFactory beanFactory)
        throws BeansException {
        this.beanFactory = beanFactory;
        postProcessRpcConsumerBeanFactory(beanFactory, (BeanDefinitionRegistry)beanFactory);
    }

    private void postProcessRpcConsumerBeanFactory(ConfigurableListableBeanFactory beanFactory, BeanDefinitionRegistry beanDefinitionRegistry) {
        String[] beanDefinitionNames = beanFactory.getBeanDefinitionNames();
        int len = beanDefinitionNames.length;
        for (int i = 0; i < len; i++) {
            String beanDefinitionName = beanDefinitionNames[i];
            BeanDefinition beanDefinition = beanFactory.getBeanDefinition(beanDefinitionName);
            String beanClassName = beanDefinition.getBeanClassName();
            if (beanClassName != null) {
                Class<?> clazz = ClassUtils.resolveClassName(beanClassName, classLoader);
                ReflectionUtils.doWithFields(clazz, new FieldCallback() {
                    @Override
                    public void doWith(Field field) throws IllegalArgumentException, IllegalAccessException {
                        parseField(field);
                    }
                });
            }

        }

        Iterator<Entry<String, BeanDefinition>> it = beanDefinitions.entrySet().iterator();
        while (it.hasNext()) {
            Entry<String, BeanDefinition> entry = it.next();
            if (context.containsBean(entry.getKey())) {
                throw new IllegalArgumentException("Spring context already has a bean named " + entry.getKey());
            }
            beanDefinitionRegistry.registerBeanDefinition(entry.getKey(), entry.getValue());
            log.info("register OrcRpcConsumerBean definition: {}", entry.getKey());
        }

    }

    private void parseField(Field field) {
        // 获取所有OrcRpcConsumer注解
        OrcRpcConsumer orcRpcConsumer = field.getAnnotation(OrcRpcConsumer.class);
        if (orcRpcConsumer != null) {
            // 使用field的类型和OrcRpcConsumer注解一起生成BeanDefinition
            OrcRpcConsumerBeanDefinitionBuilder beanDefinitionBuilder = new OrcRpcConsumerBeanDefinitionBuilder(field.getType(), orcRpcConsumer);
            BeanDefinition beanDefinition = beanDefinitionBuilder.build();
            beanDefinitions.put(field.getName(), beanDefinition);
        }
    }

ProxyFactory的主要实现:

public class JdkProxyFactory implements ProxyFactory{

    @Override
    public Object getProxy(ServiceMetadata serviceMetadata) {
        return Proxy
            .newProxyInstance(serviceMetadata.getClazz().getClassLoader(), new Class[] {serviceMetadata.getClazz()},
                new ClientInvocationHandler(serviceMetadata));
    }

    private class ClientInvocationHandler implements InvocationHandler {

        private ServiceMetadata serviceMetadata;

        public ClientInvocationHandler(ServiceMetadata serviceMetadata) {
            this.serviceMetadata = serviceMetadata;
        }

        @Override
        public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
            String serviceId = ServiceUtils.getServiceId(serviceMetadata);
            // 通过负载均衡器选取一个服务提供方地址
            ServiceURL service = InvocationServiceSelector.select(serviceMetadata);

            OrcRpcRequest request = new OrcRpcRequest();
            request.setMethod(method.getName());
            request.setParameterTypes(method.getParameterTypes());
            request.setParameters(args);
            request.setRequestId(UUID.randomUUID().toString());
            request.setServiceId(serviceId);

            OrcRpcResponse response = InvocationClientContainer.getInvocationClient(service.getServerNet()).invoke(request, service);
            if (response.getStatus() == RpcStatusEnum.SUCCESS) {
                return response.getData();
            } else if (response.getException() != null) {
                throw new OrcRpcException(response.getException().getMessage());
            } else {
                throw new OrcRpcException(response.getStatus().name());
            }
        }
    }
}

本实现只使用JDK动态代理,也可以使用cglib或Javassist实现以获得更好的性能,JdkProxyFactory中。

4 IO模块

UML图如下:

结构比较清晰,分三大模块:客户端调用适配模块、服务端请求响应适配模块和Netty IO服务模块。

客户端调用适配模块

此模块比较简单,主要是为客户端调用时建立服务端接,并将连接存入缓存,避免后续同服务调用重复建立连接,连接建立成功后发起调用。下面是DefaultInvocationClient的实现:

服务端请求响应适配模块

服务请求响应模块也比较简单,是根据请求中的服务名,从缓存中获取服务元数据,然后从请求中获取调用的方法和参数类型信息,反射获取调用方法信息。然后从spring context中获取bean进行反射调用。

Netty IO服务模块

Netty IO服务模块是核心,稍复杂一些,客户端和服务端主要处理流程如下:

其中,重点是这四个类的实现:NettyNetClient、NettyNetServer、NettyClientChannelRequestHandler和NettyServerChannelRequestHandler,上面的UML图和下面流程图基本上讲清楚了它们的关系和一次请求的处理流程,这里就不再展开了。

下面重点讲一下编码解码器。

在技术选型章节中,提及了采用的通信协议,定义了私有的RPC协议:

+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+ 
|  BYTE  |        |        |        |        |        |        |             ........ 
+--------------------------------------------+--------+-----------------+--------+--------+--------+--------+--------+--------+-----------------+ 
|  magic | version|  type  |           content lenth           |                   content byte[]                                        |        | 
+--------+-----------------------------------------------------------------------------------------+--------------------------------------------+
  • 第一个字节是魔法数定义为0X35。
  • 第二个字节代表协议版本号。
  • 第三个字节是请求类型,0代表请求1代表响应。
  • 第四个字节表示消息长度,即此四个字节后面此长度的内容是消息content。

编码器的实现如下:

@Override
protected void encode(ChannelHandlerContext channelHandlerContext, ProtocolMsg protocolMsg, ByteBuf byteBuf)
    throws Exception {
    // 写入协议头
    byteBuf.writeByte(ProtocolConstant.MAGIC);
    // 写入版本
    byteBuf.writeByte(ProtocolConstant.DEFAULT_VERSION);
    // 写入请求类型
    byteBuf.writeByte(protocolMsg.getMsgType());
    // 写入消息长度
    byteBuf.writeInt(protocolMsg.getContent().length);
    // 写入消息内容
    byteBuf.writeBytes(protocolMsg.getContent());
}

解码器的实现如下:

六 测试

在本人MacBook Pro 13寸,4核I5,16g内存,使用Nacos注册中心,启动一个服务器,一个客户端情况下,采用轮询负载均衡策略的情况下,使用Apache ab测试。

在启用8个线程发起10000个请求的情况下,可以做到 18秒完成所有请求,qps550:

在启用100个线程发起10000个请求的情况下,可以做到 13.8秒完成所有请求,qps724:

七 总结

在实现这个RPC框架的过程中,我也重新学习了很多知识,比如通信协议、IO框架等。也横向学习了当前最热的gRPC,借此又看了很多相关的源码,收获很大。后续我也会继续维护升级这个框架,比如引入熔断降级等机制,做到持续学习持续进步。

作者 | 麓行

原文链接:http://click.aliyun.com/m/1000282969/

本文为阿里云原创内容,未经允许不得转载。

相关推荐

十分钟让你学会LNMP架构负载均衡(impala负载均衡)

业务架构、应用架构、数据架构和技术架构一、几个基本概念1、pv值pv值(pageviews):页面的浏览量概念:一个网站的所有页面,在一天内,被浏览的总次数。(大型网站通常是上千万的级别)2、u...

AGV仓储机器人调度系统架构(agv物流机器人)

系统架构层次划分采用分层模块化设计,分为以下五层:1.1用户接口层功能:提供人机交互界面(Web/桌面端),支持任务下发、实时监控、数据可视化和报警管理。模块:任务管理面板:接收订单(如拣货、...

远程热部署在美团的落地实践(远程热点是什么意思)

Sonic是美团内部研发设计的一款用于热部署的IDEA插件,本文其实现原理及落地的一些技术细节。在阅读本文之前,建议大家先熟悉一下Spring源码、SpringMVC源码、SpringBoot...

springboot搭建xxl-job(分布式任务调度系统)

一、部署xxl-job服务端下载xxl-job源码:https://gitee.com/xuxueli0323/xxl-job二、导入项目、创建xxl_job数据库、修改配置文件为自己的数据库三、启动...

大模型:使用vLLM和Ray分布式部署推理应用

一、vLLM:面向大模型的高效推理框架1.核心特点专为推理优化:专注于大模型(如GPT-3、LLaMA)的高吞吐量、低延迟推理。关键技术:PagedAttention:类似操作系统内存分页管理,将K...

国产开源之光【分布式工作流调度系统】:DolphinScheduler

DolphinScheduler是一个开源的分布式工作流调度系统,旨在帮助用户以可靠、高效和可扩展的方式管理和调度大规模的数据处理工作流。它支持以图形化方式定义和管理工作流,提供了丰富的调度功能和监控...

简单可靠高效的分布式任务队列系统

#记录我的2024#大家好,又见面了,我是GitHub精选君!背景介绍在系统访问量逐渐增大,高并发、分布式系统成为了企业技术架构升级的必由之路。在这样的背景下,异步任务队列扮演着至关重要的角色,...

虚拟服务器之间如何分布式运行?(虚拟服务器部署)

  在云计算和虚拟化技术快速发展的今天,传统“单机单任务”的服务器架构早已难以满足现代业务对高并发、高可用、弹性伸缩和容错容灾的严苛要求。分布式系统应运而生,并成为支撑各类互联网平台、企业信息系统和A...

一文掌握 XXL-Job 的 6 大核心组件

XXL-Job是一个分布式任务调度平台,其核心组件主要包括以下部分,各组件相互协作实现高效的任务调度与管理:1.调度注册中心(RegistryCenter)作用:负责管理调度器(Schedule...

京东大佬问我,SpringBoot中如何做延迟队列?单机与分布式如何做?

京东大佬问我,SpringBoot中如何做延迟队列?单机如何做?分布式如何做呢?并给出案例与代码分析。嗯,用户问的是在SpringBoot中如何实现延迟队列,单机和分布式环境下分别怎么做。这个问题其实...

企业级项目组件选型(一)分布式任务调度平台

官网地址:https://www.xuxueli.com/xxl-job/能力介绍架构图安全性为提升系统安全性,调度中心和执行器进行安全性校验,双方AccessToken匹配才允许通讯;调度中心和执...

python多进程的分布式任务调度应用场景及示例

多进程的分布式任务调度可以应用于以下场景:分布式爬虫:importmultiprocessingimportrequestsdefcrawl(url):response=re...

SpringBoot整合ElasticJob实现分布式任务调度

介绍ElasticJob是面向互联网生态和海量任务的分布式调度解决方案,由两个相互独立的子项目ElasticJob-Lite和ElasticJob-Cloud组成。它通过弹性调度、资源管控、...

分布式可视化 DAG 任务调度系统 Taier 的整体流程分析

Taier作为袋鼠云的开源项目之一,是一个分布式可视化的DAG任务调度系统。旨在降低ETL开发成本,提高大数据平台稳定性,让大数据开发人员可以在Taier直接进行业务逻辑的开发,而不用关...

SpringBoot任务调度:@Scheduled与TaskExecutor全面解析

一、任务调度基础概念1.1什么是任务调度任务调度是指按照预定的时间计划或特定条件自动执行任务的过程。在现代应用开发中,任务调度扮演着至关重要的角色,它使得开发者能够自动化处理周期性任务、定时任务和异...

取消回复欢迎 发表评论: