python实现自动化测试框架如何进行数据参数化?这个包可以了解下
ccwgpt 2024-10-04 14:02 25 浏览 0 评论
1.数据参数化介绍
只要你是负责编写自动化测试脚本的,数据参数化这个思想你就肯定会用 ,数据参数化的工具你肯定的懂一些 ,因为它能大大的提高我们自动化脚本编写效率 。
1.1什么是数据参数化
所谓的数据参数化 ,是指所执行的测试用例步骤相同、而数据不同 ,每次运行用例只变化的是数据 ,于是将这些数据专门放在一起进行批量循环运行 ,从而完成测试用例执行的目的 。
以登录功能为例 ,若一个登录功能每次操作的步骤是 :
- 输入用户名
- 输入密码
- 点击登录按钮 。
但是,因为每次输入的数据不同,导致生成的测试用例就不同了 ,同样还是这个登录功能,加上数据就变为以下的用例了 。
- case1 : 输入正确的用户名 ,输入正确的密码 ,点击登录
- case2 : 输入正确的用户,输入错误的密码,点击登录
- case3 :输入正确的用户名,输入空的密码,点击登录
- casen : ...
可以看到 ,在这些用例中,每条用例最大的不同是什么呢 ?其实就是数据不同 。但是由于数据不同,从而生成了多条测试用例 ,在功能测试中,这些用例是需要分别写、分别执行 。
1.2.为什么要进行数据参数化 ?
在功能测试中,即使是相同的步骤 ,只是数据不同 ,我们亦然也要尽量分开编写每一条用例 ,比如像上面的编写方式 ,因为这些编写它的易读性更好 ,功能测试设计测试用例和执行用例往往不是一个人 ,所以用例编写的易读性是就是一个很重要的因素 。
但是如果将上面的用例进行自动化实现 ,虽然按照一条用例对应一个方法是一种很清晰的思路 ,但是它的最大问题就是代码冗余 ,当一个功能中步骤相同,只是数据不同时,你的数据越多,代码冗余度就越高 。你会发现每个测试方法中的代码就会是相同的 。
像代码冗余这种问题,在编写自动化时是必须要考虑的一个问题,因为随着代码量越多 ,冗余度越高、越难维护 。
以下就是是通过正常方式实现登录的自动化脚本 :
import unittest
from package_unittest.login import login
class TestLogin(unittest.TestCase):
# case1 : 输入正确的用户名和正确的密码进行登录
def test_login_success(self):
expect_reslut = 0
actual_result = login('admin','123456').get('code')
self.assertEqual(expect_reslut,actual_result)
# case2 : 输入正确的用户名和错误的密码进行登录
def test_password_is_wrong(self):
expect_reslut = 3
actual_result = login('admin', '1234567').get('code')
self.assertEqual(expect_reslut, actual_result)
# case3 : 输入正确的用户名和空的密码进行登录
def test_password_is_null(self):
expect_reslut = 2
actual_result = login('admin', '').get('code')
self.assertEqual(expect_reslut, actual_result)
可以看到,三条用例对应三个测试方法,虽然清晰 ,代码每个方法中的代码几乎是相同的。
那如果用参数化实现的代码是什么呢 ? 可以看下面的这段代码 :
class TestLogin(unittest.TestCase):
@parameterized.expand(cases)
def test_login(self,expect_result,username,password):
actual_result = login(username,password).get('code')
self.assertEqual(expect_result,actual_result)
以上代码只有一条用例 ,不管这个功能有几条都能执行 。
通过上面两种形式的比较可以看出 :为什么要进行数据参数化呢 ?其实就是降低代码冗余、提高代码复用度 ,将主要编写测试用例的时间转化为编写测试数据上来 。
1.3.如何进行数据参数化
在代码中实现数据参数化都需要借助于外部工具 ,比如专门用于unittest的ddt , 既支持unittest、也支持pytest的parameterized ,专门在pytest中使用的fixture.params .
参数化工具 | 支持测试框架 | 备注 |
ddt | unittest | 第三方包,需要下载安装 |
parameterized | nose,unittest,pytest | 第三方包,需要下载安装 |
@pytest.mark.parametrize | pytest | 本身属于pytest中的功能 |
@pytest.fixture(params=[]) | pytest | 本身属于pytest中的功能 |
以上实现数据参数化的工具有两个共同点:
- 都能实现数据参数化
- 都时装饰器来作用于测试用例脚本 。
2.模块介绍
1.下载安装 :
# 下载
pip install parameterized
# 验证 :
pip show parameterized
2.导包
# 直接导入parameterized类
from parameterized import parameterized
3.官网示例
@parameterized 和 @parameterized.expand 装饰器接受列表 或元组或参数(...)的可迭代对象,或返回列表或 可迭代:
from parameterized import parameterized, param
# A list of tuples
@parameterized([
(2, 3, 5),
(3, 5, 8),
])
def test_add(a, b, expected):
assert_equal(a + b, expected)
# A list of params
@parameterized([
param("10", 10),
param("10", 16, base=16),
])
def test_int(str_val, expected, base=10):
assert_equal(int(str_val, base=base), expected)
# An iterable of params
@parameterized(
param.explicit(*json.loads(line))
for line in open("testcases.jsons")
)
def test_from_json_file(...):
...
# A callable which returns a list of tuples
def load_test_cases():
return [
("test1", ),
("test2", ),
]
@parameterized(load_test_cases)
def test_from_function(name):
...
请注意,使用迭代器或生成器时,将加载所有项 在测试运行开始之前放入内存(我们显式执行此操作以确保 生成器在多进程或多线程中只耗尽一次 测试环境)。
@parameterized装饰器可以使用测试类方法,并且可以独立使用 功能:
from parameterized import parameterized
class AddTest(object):
@parameterized([
(2, 3, 5),
])
def test_add(self, a, b, expected):
assert_equal(a + b, expected)
@parameterized([
(2, 3, 5),
])
def test_add(a, b, expected):
assert_equal(a + b, expected)
@parameterized.expand可用于生成测试方法 无法使用测试生成器的情况(例如,当测试 类是单元测试的一个子类。测试用例):
import unittest
from parameterized import parameterized
class AddTestCase(unittest.TestCase):
@parameterized.expand([
("2 and 3", 2, 3, 5),
("3 and 5", 3, 5, 8),
])
def test_add(self, _, a, b, expected):
assert_equal(a + b, expected)
将创建测试用例:
$ nosetests example.py
test_add_0_2_and_3 (example.AddTestCase) ... ok
test_add_1_3_and_5 (example.AddTestCase) ... ok
----------------------------------------------------------------------
Ran 2 tests in 0.001s
OK
请注意,@parameterized.expand 的工作原理是在测试上创建新方法 .class。如果第一个参数是字符串,则该字符串将添加到末尾 的方法名称。例如,上面的测试用例将生成方法test_add_0_2_and_3和test_add_1_3_and_5。
@parameterized.expand 生成的测试用例的名称可以是 使用 name_func 关键字参数进行自定义。该值应 是一个接受三个参数的函数:testcase_func、param_num、 和参数,它应该返回测试用例的名称。testcase_func是要测试的功能,param_num将是 参数列表中测试用例参数的索引,参数(参数的实例)将是将使用的参数。
import unittest
from parameterized import parameterized
def custom_name_func(testcase_func, param_num, param):
return "%s_%s" %(
testcase_func.__name__,
parameterized.to_safe_name("_".join(str(x) for x in param.args)),
)
class AddTestCase(unittest.TestCase):
@parameterized.expand([
(2, 3, 5),
(2, 3, 5),
], name_func=custom_name_func)
def test_add(self, a, b, expected):
assert_equal(a + b, expected)
将创建测试用例:
$ nosetests example.py
test_add_1_2_3 (example.AddTestCase) ... ok
test_add_2_3_5 (example.AddTestCase) ... ok
----------------------------------------------------------------------
Ran 2 tests in 0.001s
OK
param(...) 帮助程序类存储一个特定测试的参数 箱。它可用于将关键字参数传递给测试用例:
from parameterized import parameterized, param
@parameterized([
param("10", 10),
param("10", 16, base=16),
])
def test_int(str_val, expected, base=10):
assert_equal(int(str_val, base=base), expected)
如果测试用例具有文档字符串,则该测试用例的参数将为 附加到文档字符串的第一行。可以控制此行为 doc_func参数:
from parameterized import parameterized
@parameterized([
(1, 2, 3),
(4, 5, 9),
])
def test_add(a, b, expected):
""" Test addition. """
assert_equal(a + b, expected)
def my_doc_func(func, num, param):
return "%s: %s with %s" %(num, func.__name__, param)
@parameterized([
(5, 4, 1),
(9, 6, 3),
], doc_func=my_doc_func)
def test_subtraction(a, b, expected):
assert_equal(a - b, expected)
$ nosetests example.py
Test addition. [with a=1, b=2, expected=3] ... ok
Test addition. [with a=4, b=5, expected=9] ... ok
0: test_subtraction with param(*(5, 4, 1)) ... ok
1: test_subtraction with param(*(9, 6, 3)) ... ok
----------------------------------------------------------------------
Ran 4 tests in 0.001s
OK
最后@parameterized_class参数化整个类,使用 属性列表或将应用于 .class:
from yourapp.models import User
from parameterized import parameterized_class
@parameterized_class([
{ "username": "user_1", "access_level": 1 },
{ "username": "user_2", "access_level": 2, "expected_status_code": 404 },
])
class TestUserAccessLevel(TestCase):
expected_status_code = 200
def setUp(self):
self.client.force_login(User.objects.get(username=self.username)[0])
def test_url_a(self):
response = self.client.get('/url')
self.assertEqual(response.status_code, self.expected_status_code)
def tearDown(self):
self.client.logout()
@parameterized_class(("username", "access_level", "expected_status_code"), [
("user_1", 1, 200),
("user_2", 2, 404)
])
class TestUserAccessLevel(TestCase):
def setUp(self):
self.client.force_login(User.objects.get(username=self.username)[0])
def test_url_a(self):
response = self.client.get("/url")
self.assertEqual(response.status_code, self.expected_status_code)
def tearDown(self):
self.client.logout()
@parameterized_class装饰器接受class_name_func论点, 它控制由 @parameterized_class 生成的参数化类的名称:
from parameterized import parameterized, parameterized_class
def get_class_name(cls, num, params_dict):
# By default the generated class named includes either the "name"
# parameter (if present), or the first string value. This example shows
# multiple parameters being included in the generated class name:
return "%s_%s_%s%s" %(
cls.__name__,
num,
parameterized.to_safe_name(params_dict['a']),
parameterized.to_safe_name(params_dict['b']),
)
@parameterized_class([
{ "a": "hello", "b": " world!", "expected": "hello world!" },
{ "a": "say ", "b": " cheese :)", "expected": "say cheese :)" },
], class_name_func=get_class_name)
class TestConcatenation(TestCase):
def test_concat(self):
self.assertEqual(self.a + self.b, self.expected)
$ nosetests -v test_math.py
test_concat (test_concat.TestConcatenation_0_hello_world_) ... ok
test_concat (test_concat.TestConcatenation_0_say_cheese__) ... ok
使用单个参数
如果测试函数只接受一个参数并且该值不可迭代, 然后可以提供值列表,而无需将每个值包装在 元:
@parameterized([1, 2, 3])
def test_greater_than_zero(value):
assert value > 0
但请注意,如果单个参数是可迭代的(例如列表或 元组),那么它必须包装在元组、列表或 param(...) 装饰器中:
@parameterized([
([1, 2, 3], ),
([3, 3], ),
([6], ),
])
def test_sums_to_6(numbers):
assert sum(numbers) == 6
虽然看似以上功能支持的挺多 ,但其实真正用的不多 ,因为它跟框架有很大关系的 。具体说明下 :
总结:
- 它支持nose是最好的 . 如果你的自动化中使用nose,那么以上功能基本都能用到 。
- 如果你用的测试框架是unittest ,你只能用到它的expand()这个函数 ,不过有这个函数也就够了 。
- 如果你用的测试框架是pytest , 它支持了Pytest3的版本,再高版本的就不支持了,同时pytest也有自己的参数化工具,一般也不用它了。
3.项目实践
通过数据参数胡重新编写登录测试用例 ,将以前yaml中的登录用例数据转化为paramterized的数据格式 ,它的数据格式要求为:[(),(),()] . 所以,编写测试用例的数据就变为了以下的代码 。
# 将登录数据转化为paramterize所识别的格式。
def get_data():
yaml_path = get_file_path('login.yaml') # 获取login.yaml的全路径
result = read_yaml(yaml_path) # 转化为python对象
login_data = result.get('login') # 获取字典中login的值
logger.debug("登录结果:{}".format(login_data))
return (login_data) # 获取字典中login的值
@allure.epic("vshop")
@allure.story("登录")
class TestLogin(unittest.TestCase):
# case1 : 测试登录功能
@parameterized.expand(get_data())
def test_login(self,case_name,username,password,code,message):
logger.info("从参数化获取的数据:{}|{}|{}|{}|{}".format(case_name,username,password,code,message))
with allure.step("执行用例:{},输入用户名:{},输入密码:{}".format(case_name,username,password)):
login_result = login(username,password)
self.assertEqual(code, login_result.get('errno'))
self.assertEqual(message, login_result.get('errmsg'))
这样的话,我们只编写了一条测试用例 ,但是在测试数据中有几条数据 ,都可以正常运行 。
4.项目总结
至此,我们已经实现了五步了 ,分别是 :
第一 、如何编写一个接口自动化框架 ,在第一篇博文中介绍了 。https://www.toutiao.com/item/7223778665283404323/
第二、如何使用unittest编写测试用例 ,已经在第二篇博文中介绍了 。https://www.toutiao.com/item/7225986414469825024/
第三、如何使用requests实现接口请求 ,并和测试用例如何对接 ,已经在第三篇博文中介绍了。https://www.toutiao.com/item/7231485629643997748/
第四、如何使用yaml编写测试数据 ,已经在第四篇博文中介绍了 。https://www.toutiao.com/item/7236369710286733861/
第五,如何使用allure生成测试报告,已经在第五篇博文中介绍了 。https://www.toutiao.com/item/7243783682144944697/
第六 ,如何使用loguru记录日志 ,已经在第六篇博文中介绍了 。https://www.toutiao.com/item/7253833815246815796/
第七,如何使用pymysql连接数据库,已经在第七篇博文中介绍了 。https://www.toutiao.com/item/7256573953278214668/
第八,如何进行数据参数化 ,也就是本篇博文了 。
相关推荐
- 十分钟让你学会LNMP架构负载均衡(impala负载均衡)
-
业务架构、应用架构、数据架构和技术架构一、几个基本概念1、pv值pv值(pageviews):页面的浏览量概念:一个网站的所有页面,在一天内,被浏览的总次数。(大型网站通常是上千万的级别)2、u...
- AGV仓储机器人调度系统架构(agv物流机器人)
-
系统架构层次划分采用分层模块化设计,分为以下五层:1.1用户接口层功能:提供人机交互界面(Web/桌面端),支持任务下发、实时监控、数据可视化和报警管理。模块:任务管理面板:接收订单(如拣货、...
- 远程热部署在美团的落地实践(远程热点是什么意思)
-
Sonic是美团内部研发设计的一款用于热部署的IDEA插件,本文其实现原理及落地的一些技术细节。在阅读本文之前,建议大家先熟悉一下Spring源码、SpringMVC源码、SpringBoot...
- springboot搭建xxl-job(分布式任务调度系统)
-
一、部署xxl-job服务端下载xxl-job源码:https://gitee.com/xuxueli0323/xxl-job二、导入项目、创建xxl_job数据库、修改配置文件为自己的数据库三、启动...
- 大模型:使用vLLM和Ray分布式部署推理应用
-
一、vLLM:面向大模型的高效推理框架1.核心特点专为推理优化:专注于大模型(如GPT-3、LLaMA)的高吞吐量、低延迟推理。关键技术:PagedAttention:类似操作系统内存分页管理,将K...
- 国产开源之光【分布式工作流调度系统】:DolphinScheduler
-
DolphinScheduler是一个开源的分布式工作流调度系统,旨在帮助用户以可靠、高效和可扩展的方式管理和调度大规模的数据处理工作流。它支持以图形化方式定义和管理工作流,提供了丰富的调度功能和监控...
- 简单可靠高效的分布式任务队列系统
-
#记录我的2024#大家好,又见面了,我是GitHub精选君!背景介绍在系统访问量逐渐增大,高并发、分布式系统成为了企业技术架构升级的必由之路。在这样的背景下,异步任务队列扮演着至关重要的角色,...
- 虚拟服务器之间如何分布式运行?(虚拟服务器部署)
-
在云计算和虚拟化技术快速发展的今天,传统“单机单任务”的服务器架构早已难以满足现代业务对高并发、高可用、弹性伸缩和容错容灾的严苛要求。分布式系统应运而生,并成为支撑各类互联网平台、企业信息系统和A...
- 一文掌握 XXL-Job 的 6 大核心组件
-
XXL-Job是一个分布式任务调度平台,其核心组件主要包括以下部分,各组件相互协作实现高效的任务调度与管理:1.调度注册中心(RegistryCenter)作用:负责管理调度器(Schedule...
- 京东大佬问我,SpringBoot中如何做延迟队列?单机与分布式如何做?
-
京东大佬问我,SpringBoot中如何做延迟队列?单机如何做?分布式如何做呢?并给出案例与代码分析。嗯,用户问的是在SpringBoot中如何实现延迟队列,单机和分布式环境下分别怎么做。这个问题其实...
- 企业级项目组件选型(一)分布式任务调度平台
-
官网地址:https://www.xuxueli.com/xxl-job/能力介绍架构图安全性为提升系统安全性,调度中心和执行器进行安全性校验,双方AccessToken匹配才允许通讯;调度中心和执...
- python多进程的分布式任务调度应用场景及示例
-
多进程的分布式任务调度可以应用于以下场景:分布式爬虫:importmultiprocessingimportrequestsdefcrawl(url):response=re...
- SpringBoot整合ElasticJob实现分布式任务调度
-
介绍ElasticJob是面向互联网生态和海量任务的分布式调度解决方案,由两个相互独立的子项目ElasticJob-Lite和ElasticJob-Cloud组成。它通过弹性调度、资源管控、...
- 分布式可视化 DAG 任务调度系统 Taier 的整体流程分析
-
Taier作为袋鼠云的开源项目之一,是一个分布式可视化的DAG任务调度系统。旨在降低ETL开发成本,提高大数据平台稳定性,让大数据开发人员可以在Taier直接进行业务逻辑的开发,而不用关...
- SpringBoot任务调度:@Scheduled与TaskExecutor全面解析
-
一、任务调度基础概念1.1什么是任务调度任务调度是指按照预定的时间计划或特定条件自动执行任务的过程。在现代应用开发中,任务调度扮演着至关重要的角色,它使得开发者能够自动化处理周期性任务、定时任务和异...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- MVC框架 (46)
- spring框架 (46)
- 框架图 (58)
- flask框架 (53)
- quartz框架 (51)
- abp框架 (47)
- jpa框架 (47)
- laravel框架 (46)
- springmvc框架 (49)
- 分布式事务框架 (65)
- scrapy框架 (56)
- shiro框架 (61)
- 定时任务框架 (56)
- java日志框架 (61)
- JAVA集合框架 (47)
- grpc框架 (55)
- ppt框架 (48)
- 内联框架 (52)
- winform框架 (46)
- gui框架 (44)
- cad怎么画框架 (58)
- ps怎么画框架 (47)
- ssm框架实现登录注册 (49)
- oracle字符串长度 (48)
- oracle提交事务 (47)