分布式定时任务调度框架实践(分布式任务调度场景)
ccwgpt 2024-10-05 14:10 25 浏览 0 评论
分布式任务调度框架几乎是每个大型应用必备的工具,本文介绍了任务调度框架使用的需求背景和痛点,对业界普遍使用的开源分布式任务调度框架的使用进行了探究实践,并分析了这几种框架的优劣势和对自身业务的思考。
一、业务背景
1.1 为什么需要使用定时任务调度
(1)时间驱动处理场景:整点发送优惠券,每天更新收益,每天刷新标签数据和人群数据。
(2)批量处理数据:按月批量统计报表数据,批量更新短信状态,实时性要求不高。
(3)异步执行解耦:活动状态刷新,异步执行离线查询,与内部逻辑解耦。
1.2 使用需求和痛点
(1)任务执行监控告警能力。
(2)任务可灵活动态配置,无需重启。
(3)业务透明,低耦合,配置精简,开发方便。
(4)易测试。
(5)高可用,无单点故障。
(6)任务不可重复执行,防止逻辑异常。
(7)大任务的分发并行处理能力。
二、开源框架实践与探索
2.1 Java 原生 Timer 和ScheduledExecutorService
2.1.1 Timer使用
Timer缺陷:
- Timer底层是使用单线程来处理多个Timer任务,这意味着所有任务实际上都是串行执行,前一个任务的延迟会影响到之后的任务的执行。
- 由于单线程的缘故,一旦某个定时任务在运行时,产生未处理的异常,那么不仅当前这个线程会停止,所有的定时任务都会停止。
- Timer任务执行是依赖于系统绝对时间,系统时间变化会导致执行计划的变更。
由于上述缺陷,尽量不要使用Timer, idea中也会明确提示,使用ScheduledThreadPoolExecutor替代Timer 。
2.1.2 ScheduledExecutorService使用
ScheduledExecutorService对于Timer的缺陷进行了修补,首先ScheduledExecutorService内部实现是ScheduledThreadPool线程池,可以支持多个任务并发执行。
对于某一个线程执行的任务出现异常,也会处理,不会影响其他线程任务的执行,另外ScheduledExecutorService是基于时间间隔的延迟,执行不会由于系统时间的改变发生变化。
当然,ScheduledExecutorService也有自己的局限性:只能根据任务的延迟来进行调度,无法满足基于绝对时间和日历调度的需求。
2.2 Spring Task
2.2.1 Spring Task 使用
spring task 是spring自主开发的轻量级定时任务框架,不需要依赖其他额外的包,配置较为简单。
此处使用注解配置
2.2.2 Spring Task缺陷
Spring Task 本身不支持持久化,也没有推出官方的分布式集群模式,只能靠开发者在业务应用中自己手动扩展实现,无法满足可视化,易配置的需求。
2.3 永远经典的 Quartz
2.3.1 基本介绍
Quartz框架是Java领域最著名的开源任务调度工具,也是目前事实上的定时任务标准,几乎全部的开源定时任务框架都是基于Quartz核心调度构建而成。
2.3.2 原理解析
核心组件和架构
关键概念
(1)Scheduler:任务调度器,是执行任务调度的控制器。本质上是一个计划调度容器,注册了全部Trigger和对应的JobDetail, 使用线程池作为任务运行的基础组件,提高任务执行效率。
(2)Trigger:触发器,用于定义任务调度的时间规则,告诉任务调度器什么时候触发任务,其中CronTrigger是基于cron表达式构建的功能强大的触发器。
(3)Calendar:日历特定时间点的集合。一个trigger可以包含多个Calendar,可用于排除或包含某些时间点。
(4)JobDetail:是一个可执行的工作,用来描述Job实现类及其它相关的静态信息,如Job的名称、监听器等相关信息。
(5)Job:任务执行接口,只有一个execute方法,用于执行真正的业务逻辑。
(6)JobStore:任务存储方式,主要有RAMJobStore和JDBCJobStore,RAMJobStore是存储在JVM的内存中,有丢失和数量受限的风险,JDBCJobStore是将任务信息持久化到数据库中,支持集群。
2.3.3 实践说明
(1)关于Quartz的基本使用
- 可参考Quartz官方文档和网上博客实践教程。
(2)业务使用要满足动态修改和重启不丢失, 一般需要使用数据库进行保存。
- Quartz本身支持JDBCJobStore,但是其配置的数据表比较多,官方推荐配置可参照官方文档,超过10张表,业务使用比较重。
- 在使用的时候只需要存在基本trigger配置和对应任务以及相关执行日志的表即可满足绝大部分需求。
(3)组件化
- 将quartz动态任务配置信息持久化到数据库,将数据操作包装成基本jar包,供项目之间使用,引用项目只需要引入jar包依赖和配置对应的数据表,使用时就可以对Quartz配置透明。
(4)扩展
- 集群模式通过故障转移和负载均衡实现了任务的高可用性,通过数据库的锁机制来确保任务执行的唯一性,但是集群特性仅仅只是用来HA,节点数量的增加并不会提升单个任务的执行效率,不能实现水平扩展。
- Quartz插件可以对特定需要进行扩展,比如增加触发器和任务执行日志,任务依赖串行处理场景,可参考:quartz插件——实现任务之间的串行调度
2.3.4 缺陷和不足
(1)需要把任务信息持久化到业务数据表,和业务有耦合。
(2)调度逻辑和执行逻辑并存于同一个项目中,在机器性能固定的情况下,业务和调度之间不可避免地会相互影响。
(3)quartz集群模式下,是通过数据库独占锁来唯一获取任务,任务执行并没有实现完善的负载均衡机制。
2.4 轻量级神器 XXL-JOB
2.4.1 基本介绍
XXL-JOB是一个轻量级分布式任务调度平台,主打特点是平台化,易部署,开发迅速、学习简单、轻量级、易扩展,代码仍在持续更新中。
“调度中心”是任务调度控制台,平台自身并不承担业务逻辑,只是负责任务的统一管理和调度执行,并且提供任务管理平台, “执行器” 负责接收“调度中心”的调度并执行,可直接部署执行器,也可以将执行器集成到现有业务项目中。 通过将任务的调度控制和任务的执行解耦,业务使用只需要关注业务逻辑的开发。
主要提供了任务的动态配置管理、任务监控和统计报表以及调度日志几大功能模块,支持多种运行模式和路由策略,可基于对应执行器机器集群数量进行简单分片数据处理。
2.4.2 原理解析
2.1.0版本前核心调度模块都是基于quartz框架,2.1.0版本开始自研调度组件,移除quartz依赖 ,使用时间轮调度。
2.4.3 实践说明
详细配置和介绍参考官方文档。
2.4.3.1 demo使用:
示例1:实现简单任务配置,只需要继承IJobHandler 抽象类,并声明注解
@JobHandler(value="offlineTaskJobHandler") ,实现业务逻辑即可。(注:此次引入了dubbo,后文介绍)。
@JobHandler(value="offlineTaskJobHandler")
@Component
public class OfflineTaskJobHandler extends IJobHandler {
@Reference(check = false,version = "cms-dev",group="cms-service")
private OfflineTaskExecutorFacade offlineTaskExecutorFacade;
@Override
public ReturnT<String> execute(String param) throws Exception {
XxlJobLogger.log(" offlineTaskJobHandler start.");
try {
offlineTaskExecutorFacade.executeOfflineTask();
} catch (Exception e) {
XxlJobLogger.log("offlineTaskJobHandler-->exception." , e);
return FAIL;
}
XxlJobLogger.log("XXL-JOB, offlineTaskJobHandler end.");
return SUCCESS;
}
}
示例2:分片广播任务。
@JobHandler(value="shardingJobHandler")
@Service
public class ShardingJobHandler extends IJobHandler {
@Override
public ReturnT<String> execute(String param) throws Exception {
// 分片参数
ShardingUtil.ShardingVO shardingVO = ShardingUtil.getShardingVo();
XxlJobLogger.log("分片参数:当前分片序号 = {}, 总分片数 = {}", shardingVO.getIndex(), shardingVO.getTotal());
// 业务逻辑
for (int i = 0; i < shardingVO.getTotal(); i++) {
if (i == shardingVO.getIndex()) {
XxlJobLogger.log("第 {} 片, 命中分片开始处理", i);
} else {
XxlJobLogger.log("第 {} 片, 忽略", i);
}
}
return SUCCESS;
}
}
2.4.3.2 整合dubbo
(1)引入dubbo-spring-boot-starter和业务facade jar包依赖。
<dependency>
<groupId>com.alibaba.spring.boot</groupId>
<artifactId>dubbo-spring-boot-starter</artifactId>
<version>2.0.0</version>
</dependency>
<dependency>
<groupId>com.demo.service</groupId>
<artifactId>xxx-facade</artifactId>
<version>1.9-SNAPSHOT</version>
</dependency>
(2)配置文件加入dubbo消费端配置(可根据环境定义多个配置文件,通过profile切换)。
## Dubbo 服务消费者配置
spring.dubbo.application.name=xxl-job
spring.dubbo.registry.address=zookeeper://zookeeper.xyz:2183
spring.dubbo.port=20880
spring.dubbo.version=demo
spring.dubbo.group=demo-service
(3)代码中通过@Reference注入facade接口即可。
@Reference(check = false,version = "demo",group="demo-service")
private OfflineTaskExecutorFacade offlineTaskExecutorFacade;
(4)启动程序加入@EnableDubboConfiguration注解。
@SpringBootApplication
@EnableDubboConfiguration
public class XxlJobExecutorApplication {
public static void main(String[] args) {
SpringApplication.run(XxlJobExecutorApplication.class, args);
}
}
2.4.4 任务可视化配置
内置了平台项目,方便了开发者对任务的管理和执行日志的监控,并提供了一些便于测试的功能。
2.4.5 扩展
(1)任务监控和报表的优化。
(2)任务报警方式的扩展,比如加入告警中心,提供内部消息,短信告警。
(3)对实际业务内部执行出现异常情况下的不同监控告警和重试策略。
2.5 高可用 Elastic-Job
2.5.1 基本介绍
Elastic-Job是一个分布式调度解决方案,由两个相互独立的子项目Elastic-Job-Lite和Elastic-Job-Cloud组成。
Elastic-Job-Lite定位为轻量级无中心化解决方案,使用jar包的形式提供分布式任务的协调服务。
Elastic-Job-Cloud使用Mesos + Docker的解决方案,额外提供资源治理、应用分发以及进程隔离等服务。
可惜的是已经两年没有迭代更新记录。
2.5.2 原理解析
2.5.3 实践说明
2.5.3.1 demo使用
(1)安装zookeeper,配置注册中心config,配置文件加入注册中心zk的配置。
@Configuration
@ConditionalOnExpression("'${regCenter.serverList}'.length() > 0")
public class JobRegistryCenterConfig {
@Bean(initMethod = "init")
public ZookeeperRegistryCenter regCenter(@Value("${regCenter.serverList}") final String serverList,
@Value("${regCenter.namespace}") final String namespace) {
return new ZookeeperRegistryCenter(new ZookeeperConfiguration(serverList, namespace));
}
}
??
spring.application.name=demo_elasticjob
regCenter.serverList=localhost:2181
regCenter.namespace=demo_elasticjob
spring.datasource.url=jdbc:mysql://127.0.0.1:3306/xxl-job?Unicode=true&characterEncoding=UTF-8
spring.datasource.username=user
spring.datasource.password=pwd
(2)配置数据源config,并配置文件中加入数据源配置。???????
@Getter
@Setter
@NoArgsConstructor
@AllArgsConstructor
@ToString
@Configuration
@ConfigurationProperties(prefix = "spring.datasource")
public class DataSourceProperties {
private String url;
private String username;
private String password;
@Bean
@Primary
public DataSource getDataSource() {
DruidDataSource dataSource = new DruidDataSource();
dataSource.setUrl(url);
dataSource.setUsername(username);
dataSource.setPassword(password);
return dataSource;
}
}
???????
spring.datasource.url=jdbc:mysql://127.0.0.1:3306/xxl-job?Unicode=true&characterEncoding=UTF-8
spring.datasource.username=user
spring.datasource.password=pwd
(3)配置事件config。???????
@Configuration
public class JobEventConfig {
@Autowired
private DataSource dataSource;
@Bean
public JobEventConfiguration jobEventConfiguration() {
return new JobEventRdbConfiguration(dataSource);
}
}
(4)为了便于灵活配置不同的任务触发事件,加入ElasticSimpleJob注解。???????
@Target({ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
public @interface ElasticSimpleJob {
@AliasFor("cron")
String value() default "";
@AliasFor("value")
String cron() default "";
String jobName() default "";
int shardingTotalCount() default 1;
String shardingItemParameters() default "";
String jobParameter() default "";
}
(5)对配置进行初始化。???????
@Configuration
@ConditionalOnExpression("'${elaticjob.zookeeper.server-lists}'.length() > 0")
public class ElasticJobAutoConfiguration {
@Value("${regCenter.serverList}")
private String serverList;
@Value("${regCenter.namespace}")
private String namespace;
@Autowired
private ApplicationContext applicationContext;
@Autowired
private DataSource dataSource;
@PostConstruct
public void initElasticJob() {
ZookeeperRegistryCenter regCenter = new ZookeeperRegistryCenter(new ZookeeperConfiguration(serverList, namespace));
regCenter.init();
Map<String, SimpleJob> map = applicationContext.getBeansOfType(SimpleJob.class);
for (Map.Entry<String, SimpleJob> entry : map.entrySet()) {
SimpleJob simpleJob = entry.getValue();
ElasticSimpleJob elasticSimpleJobAnnotation = simpleJob.getClass().getAnnotation(ElasticSimpleJob.class);
String cron = StringUtils.defaultIfBlank(elasticSimpleJobAnnotation.cron(), elasticSimpleJobAnnotation.value());
SimpleJobConfiguration simpleJobConfiguration = new SimpleJobConfiguration(JobCoreConfiguration.newBuilder(simpleJob.getClass().getName(), cron, elasticSimpleJobAnnotation.shardingTotalCount()).shardingItemParameters(elasticSimpleJobAnnotation.shardingItemParameters()).build(), simpleJob.getClass().getCanonicalName());
LiteJobConfiguration liteJobConfiguration = LiteJobConfiguration.newBuilder(simpleJobConfiguration).overwrite(true).build();
JobEventRdbConfiguration jobEventRdbConfiguration = new JobEventRdbConfiguration(dataSource);
SpringJobScheduler jobScheduler = new SpringJobScheduler(simpleJob, regCenter, liteJobConfiguration, jobEventRdbConfiguration);
jobScheduler.init();
}
}
}
(6)实现 SimpleJob接口,按上文中方法整合dubbo, 完成业务逻辑。???????
@ElasticSimpleJob(
cron = "*/10 * * * * ?",
jobName = "OfflineTaskJob",
shardingTotalCount = 2,
jobParameter = "测试参数",
shardingItemParameters = "0=A,1=B")
@Component
public class MySimpleJob implements SimpleJob {
Logger logger = LoggerFactory.getLogger(OfflineTaskJob.class);
@Reference(check = false, version = "cms-dev", group = "cms-service")
private OfflineTaskExecutorFacade offlineTaskExecutorFacade;
@Override
public void execute(ShardingContext shardingContext) {
offlineTaskExecutorFacade.executeOfflineTask();
logger.info(String.format("Thread ID: %s, 作业分片总数: %s, " +
"当前分片项: %s.当前参数: %s," +
"作业名称: %s.作业自定义参数: %s"
,
Thread.currentThread().getId(),
shardingContext.getShardingTotalCount(),
shardingContext.getShardingItem(),
shardingContext.getShardingParameter(),
shardingContext.getJobName(),
shardingContext.getJobParameter()
));
}
}
2.6 其余开源框架
(1)Saturn:Saturn是唯品会开源的一个分布式任务调度平台,在Elastic Job的基础上进行了改造。
(2)SIA-TASK:是宜信开源的分布式任务调度平台。
三、优劣势对比和业务场景适配思考
???????
业务思考:
- 丰富任务监控数据和告警策略。
- 接入统一登录和权限控制。
- 进一步简化业务接入步骤。
四、结语
对于并发场景不是特别高的系统来说,xxl-job配置部署简单易用,不需要引入多余的组件,同时提供了可视化的控制台,使用起来非常友好,是一个比较好的选择。希望直接利用开源分布式框架能力的系统,建议根据自身的情况来进行合适的选型。
原文: https://mp.weixin.qq.com/s/l4vuYpNRjKxQRkRTDhyg2Q
相关推荐
- 十分钟让你学会LNMP架构负载均衡(impala负载均衡)
-
业务架构、应用架构、数据架构和技术架构一、几个基本概念1、pv值pv值(pageviews):页面的浏览量概念:一个网站的所有页面,在一天内,被浏览的总次数。(大型网站通常是上千万的级别)2、u...
- AGV仓储机器人调度系统架构(agv物流机器人)
-
系统架构层次划分采用分层模块化设计,分为以下五层:1.1用户接口层功能:提供人机交互界面(Web/桌面端),支持任务下发、实时监控、数据可视化和报警管理。模块:任务管理面板:接收订单(如拣货、...
- 远程热部署在美团的落地实践(远程热点是什么意思)
-
Sonic是美团内部研发设计的一款用于热部署的IDEA插件,本文其实现原理及落地的一些技术细节。在阅读本文之前,建议大家先熟悉一下Spring源码、SpringMVC源码、SpringBoot...
- springboot搭建xxl-job(分布式任务调度系统)
-
一、部署xxl-job服务端下载xxl-job源码:https://gitee.com/xuxueli0323/xxl-job二、导入项目、创建xxl_job数据库、修改配置文件为自己的数据库三、启动...
- 大模型:使用vLLM和Ray分布式部署推理应用
-
一、vLLM:面向大模型的高效推理框架1.核心特点专为推理优化:专注于大模型(如GPT-3、LLaMA)的高吞吐量、低延迟推理。关键技术:PagedAttention:类似操作系统内存分页管理,将K...
- 国产开源之光【分布式工作流调度系统】:DolphinScheduler
-
DolphinScheduler是一个开源的分布式工作流调度系统,旨在帮助用户以可靠、高效和可扩展的方式管理和调度大规模的数据处理工作流。它支持以图形化方式定义和管理工作流,提供了丰富的调度功能和监控...
- 简单可靠高效的分布式任务队列系统
-
#记录我的2024#大家好,又见面了,我是GitHub精选君!背景介绍在系统访问量逐渐增大,高并发、分布式系统成为了企业技术架构升级的必由之路。在这样的背景下,异步任务队列扮演着至关重要的角色,...
- 虚拟服务器之间如何分布式运行?(虚拟服务器部署)
-
在云计算和虚拟化技术快速发展的今天,传统“单机单任务”的服务器架构早已难以满足现代业务对高并发、高可用、弹性伸缩和容错容灾的严苛要求。分布式系统应运而生,并成为支撑各类互联网平台、企业信息系统和A...
- 一文掌握 XXL-Job 的 6 大核心组件
-
XXL-Job是一个分布式任务调度平台,其核心组件主要包括以下部分,各组件相互协作实现高效的任务调度与管理:1.调度注册中心(RegistryCenter)作用:负责管理调度器(Schedule...
- 京东大佬问我,SpringBoot中如何做延迟队列?单机与分布式如何做?
-
京东大佬问我,SpringBoot中如何做延迟队列?单机如何做?分布式如何做呢?并给出案例与代码分析。嗯,用户问的是在SpringBoot中如何实现延迟队列,单机和分布式环境下分别怎么做。这个问题其实...
- 企业级项目组件选型(一)分布式任务调度平台
-
官网地址:https://www.xuxueli.com/xxl-job/能力介绍架构图安全性为提升系统安全性,调度中心和执行器进行安全性校验,双方AccessToken匹配才允许通讯;调度中心和执...
- python多进程的分布式任务调度应用场景及示例
-
多进程的分布式任务调度可以应用于以下场景:分布式爬虫:importmultiprocessingimportrequestsdefcrawl(url):response=re...
- SpringBoot整合ElasticJob实现分布式任务调度
-
介绍ElasticJob是面向互联网生态和海量任务的分布式调度解决方案,由两个相互独立的子项目ElasticJob-Lite和ElasticJob-Cloud组成。它通过弹性调度、资源管控、...
- 分布式可视化 DAG 任务调度系统 Taier 的整体流程分析
-
Taier作为袋鼠云的开源项目之一,是一个分布式可视化的DAG任务调度系统。旨在降低ETL开发成本,提高大数据平台稳定性,让大数据开发人员可以在Taier直接进行业务逻辑的开发,而不用关...
- SpringBoot任务调度:@Scheduled与TaskExecutor全面解析
-
一、任务调度基础概念1.1什么是任务调度任务调度是指按照预定的时间计划或特定条件自动执行任务的过程。在现代应用开发中,任务调度扮演着至关重要的角色,它使得开发者能够自动化处理周期性任务、定时任务和异...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- MVC框架 (46)
- spring框架 (46)
- 框架图 (58)
- flask框架 (53)
- quartz框架 (51)
- abp框架 (47)
- jpa框架 (47)
- laravel框架 (46)
- springmvc框架 (49)
- 分布式事务框架 (65)
- scrapy框架 (56)
- shiro框架 (61)
- 定时任务框架 (56)
- java日志框架 (61)
- JAVA集合框架 (47)
- grpc框架 (55)
- ppt框架 (48)
- 内联框架 (52)
- winform框架 (46)
- gui框架 (44)
- cad怎么画框架 (58)
- ps怎么画框架 (47)
- ssm框架实现登录注册 (49)
- oracle字符串长度 (48)
- oracle提交事务 (47)