ReAct 提示框架(react框架用什么工具)
ccwgpt 2024-09-14 00:27 30 浏览 0 评论
你可能不熟悉 ReAct,这是一个旨在增强语言模型 (LLM) 决策能力的尖端框架。
通过使用新的观察结果更新 LLM 的上下文窗口并提示其重新评估信息,ReAct 促进了类似于人类思维过程的推理水平,超越了诸如思维链提示之类的旧技术。
在本文中,我们对 ReAct 进行了定性评估,并使用 Langchain 的代理模块对其进行了测试,以初始化零样本代理来解决信息检索问题。
以上是论文《ReAct:语言模型中的协同推理和行动》中的一个例子。
NSDT工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎 - Three.js虚拟轴心开发包 - 3D模型在线减面 - STL模型在线切割
1、什么是 ReAct?
ReAct 模式是Reasoning and Acting(推理和行动)的缩写,是一个将AI模型中的推理过程与行动过程分开的框架。
ReAct 模式的核心是将观察结果提供给 LLM,使其能够更新其上下文窗口。该模型重新评估信息并根据这些见解采取行动以提高其推理能力。这个过程与思维链 (CoT) 提示等技术形成鲜明对比,其中推理步骤嵌入在单个提示中。
ReAct 框架通过提供处理复杂查询的结构化方法来提高 LLM 响应的质量和连贯性。LLM 可以独立分析信息并生成准确反映所提供信息的响应,而不是一次性处理查询。这种方法可以产生更明智和精确的输出。
2、AI 响应链
ReAct 和类似技术的一个关键特性是 AI 响应链(response chaining),而不是依赖于单个 AI 响应。
AI 响应链通过在提示中嵌入顺序步骤来增强 AI 推理,利用神经网络系统来提高组合创造力,从而实现细致入微和创新的响应。
Perplexity AI 是一个值得注意的实现,它根据替代查询聚合搜索结果以最大限度地提高相关性和广度,从而模拟全面的类人搜索过程并有意义地整合各种输入。我们在上一篇关于谷歌 AI 搜索引擎故障的文章中讨论了类似的主题,并将其微不足道的实现与 Perplexity AI 进行了比较。
Where is Google’s AI Search Engine?
开发人员的共同目标是找到一种方法,让 LLM 表现得更智能,减少幻觉,并通过连锁反应,我们可以刺激批判性思维系统。那是什么样子的呢?
3、一个例子
导入库和 API 密钥设置:
!pip install --upgrade openai
!pip install --upgrade langchain
!pip install --upgrade python-dotenv
!pip install google-search-results
# import libraries
import openai
import os
from langchain.llms import OpenAI
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from dotenv import load_dotenv
load_dotenv()
# load API keys; you will need to obtain these if you haven't yet
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
os.environ["SERPER_API_KEY"] = os.getenv("SERPER_API_KEY")
配置 AI 和 LLM
此示例在实施 ReAct 框架时使用零样本提示(无示例)。这意味着观察和想法仅基于指令,几乎没有或根本没有推理或相关示例来指导 AI。
你可以配置自己的模型,该模型采用少量样本和一些示例来鼓励 AI 以稍微更适合你的任务的方式思考。
llm = OpenAI(model_name="text-davinci-003" ,temperature=0)
tools = load_tools(["google-serper", "llm-math"], llm=llm)
agent = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True)
运行链
执行后,你会注意到代理如何动态搜索和收集信息以提供连贯而详细的响应。
agent.run("What is Asycd and what do they do in the space of AI?")
输出:
Entering new AgentExecutor chain...
Thought: I need to find out what Asycd is and what they do in the space of AI.
Action: Search
Action Input: "What is Asycd and what do they do in AI?"
Observation: Asycd is a company focused on using AI to revolutionize art creation and user interaction.
They leverage AI technologies to provide innovative tools that enhance the creative process
and offer personalized user experiences.
Thought: I need more details about Asycd's specific activities and platforms related to AI.
Action: Search
Action Input: "Asycd AI innovations and platforms"
Observation: Asycd offers several AI-driven solutions including:
An AI-based platform for generating unique art pieces.
Tools for artists to collaborate with AI to expand their creative boundaries.
User-centric AI applications that personalize and enhance user interactions with art and other creative content.
Thought: I now have a comprehensive understanding of Asycd's role in the AI space."
Final Answer: Asycd is a company dedicated to transforming art creation through artificial intelligence. They offer a variety of AI-driven solutions such as an AI-based platform for generating unique artwork, collaborative tools for artists to push creative limits with AI, and user-centric applications that tailor and enrich user interactions with creative content.
> Finished chain.
你可以逐步看到 AI 采取的流程操作:首先在 Google 上搜索用户提出的查询,看看是否可以通过直接搜索 Google 找到答案。
代理评估搜索结果,并有另一个想法,可能类似于“这些结果没有回答用户的查询,但它是一个有用的起点”。它可能会从搜索结果中挑选关键字,并在下一次搜索中使用这些关键字,这将是它的下一步操作。
最终,AI 找到有关 Asycd 的 AI 活动的正确信息,并利用这些信息制定对初始查询的最终响应。
4、替代方案
有几种替代提示框架旨在协调人类和人工智能的决策,类似于 ReAct:
- 思维链 (CoT) 提示:此框架鼓励 LLM 生成逐步推理轨迹或“思维链”以得出最终答案。它有助于使模型的推理过程更加透明和可解释,使其与类似人类的推理保持一致。
- 自一致性提示:这种方法提示 LLM 生成多个可能的解决方案,然后交叉检查它们的一致性,模仿人类如何复查其工作。它可以提高 LLM 输出的可靠性和连贯性。
- 递归奖励建模 (RRM):RRM 训练 LLM 以递归方式建模任务的奖励函数,使模型能够以更符合人类的方式推理任务的目标和约束。
- 辩论:该框架促使 LLM 就给定主题产生多种观点或论点,类似于人类辩论。它可以帮助提出不同的观点和考虑,促进更全面的决策。
- 迭代放大 (IA):IA 涉及通过让 LLM 批评和改进自己的响应来迭代地完善其输出,类似于人类通过自我反思和迭代来完善思维的方式。
- 合作 AI:这种方法涉及促使多个 LLM 协作和共享知识,模仿人类经常合作解决复杂问题的方式。
所有这些技术本质上都是代理性的,仅在提示配置以及 AI 响应的结构上有所不同。
5、结束语
研究 ReAct 非常有价值,它使我们能够探索各种创新方法来提高聊天机器人和人工智能工具的有效性。我们希望你发现这里分享的见解既有信息量又有启发性!
原文链接:ReAct提示框架 - BimAnt
相关推荐
- 迈向群体智能 | 智源发布首个跨本体具身大小脑协作框架
-
允中发自凹非寺量子位|公众号QbitAI3月29日,智源研究院在2025中关村论坛“未来人工智能先锋论坛”上发布首个跨本体具身大小脑协作框架RoboOS与开源具身大脑RoboBrain,可实...
- 大模型对接微信个人号,极空间部署AstrBot机器人,万事不求百度
-
「亲爱的粉丝朋友们好啊!今天熊猫又来介绍好玩有趣的Docker项目了,喜欢的记得点个关注哦!」引言前两天熊猫发过一篇关于如何在极空间部署AstrBot并对接QQ消息平台的文章,不过其实QQ现在已经很少...
- Seata,让分布式事务不再是难题!实战分享带你领略Seata的魅力!
-
终身学习、乐于分享、共同成长!前言Seata是一款开源的分布式事务解决方案,致力于提供高性能和简单易用的分布式事务服务。Seata将为用户提供了AT、TCC、SAGA和XA事务模式,为用户打造一站式的...
- 常见分布式事务解决方案(分布式事务解决的问题)
-
1.两阶段提交(2PC)原理:分为准备阶段(协调者询问参与者是否可提交)和提交阶段(协调者根据参与者反馈决定提交或回滚)。优点:强一致性,适用于数据库层(如XA协议)。缺点:同步阻塞:所有参与者阻塞...
- 分布式事务:从崩溃到高可用,程序员必须掌握的实战方案!
-
“支付成功,但订单状态未更新!”、“库存扣减后,交易却回滚了!”——如果你在分布式系统中踩过这些“天坑”,这篇文章就是你的救命稻草!本文将手把手拆解分布式事务的核心痛点和6大主流解决方案,用代码实战+...
- 谈谈对分布式事务的一点理解和解决方案
-
分布式事务首先,做系统拆分的时候几乎都会遇到分布式事务的问题,一个仿真的案例如下:项目初期,由于用户体量不大,订单模块和钱包模块共库共应用(大war包时代),模块调用可以简化为本地事务操作,这样做只要...
- 一篇教你通过Seata解决分布式事务问题
-
1 Seata介绍Seata是由阿里中间件团队发起的开源分布式事务框架项目,依赖支持本地ACID事务的关系型数据库,可以高效并且对业务0侵入的方式解决微服务场景下面临的分布式事务问题,目前提供AT...
- Seata分布式事务详解(原理流程及4种模式)
-
Seata分布式事务是SpringCloudAlibaba的核心组件,也是构建分布式的基石,下面我就全面来详解Seata@mikechen本篇已收于mikechen原创超30万字《阿里架构师进阶专题合...
- 分布式事务最终一致性解决方案有哪些?MQ、TCC、saga如何实现?
-
JTA方案适用于单体架构多数据源时实现分布式事务,但对于微服务间的分布式事务就无能为力了,我们需要使用其他的方案实现分布式事务。1、本地消息表本地消息表的核心思想是将分布式事务拆分成本地事务进行处理...
- 彻底掌握分布式事务2PC、3PC模型(分布式事务视频教程)
-
原文:https://mp.weixin.qq.com/s/_zhntxv07GEz9ktAKuj70Q作者:马龙台工作中使用最多的是本地事务,但是在对单一项目拆分为SOA、微服务之后,就会牵扯出分...
- Seata分布式事务框架关于Annotation的SAGA模式分析
-
SAGAAnnotation是ApacheSeata版本2.3.0中引入的功能,它提供了一种使用Java注解而不是传统的JSON配置或编程API来实现SAGA事务模式的声明...
- 分布式事务,原理简单,写起来全是坑
-
今天我们就一起来看下另一种模式,XA模式!其实我觉得seata中的四种不同的分布式事务模式,学完AT、TCC以及XA就够了,Saga不好玩,而且长事务本身就有很多问题,也不推荐使用。S...
- 内存空间节约利器redis的bitmap(位图)应用场景有哪些你知道吗
-
在前面我们分享过一次Redis常用数据结构和使用场景,文章对Redis基本使用做了一个简单的API说明,但是对于其中String类型中的bitmap(位图)我们需要重点说明一下,因为他的作用真的不容忽...
- 分布式事务原理详解(图文全面总结)
-
分布式事务是非常核心的分布式系统,也是大厂经常考察对象,下面我就重点详解分布式事务及原理实现@mikechen本文作者:陈睿|mikechen文章来源:mikechen.cc分布式事务分布式事务指的是...
- 大家平时天天说的分布式系统到底是什么东西?
-
目录从单块系统说起团队越来越大,业务越来越复杂分布式出现:庞大系统分而治之分布式系统所带来的技术问题一句话总结:什么是分布式系统设计和开发经验补充说明:中间件系统及大数据系统前言现在有很多Java技术...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- MVC框架 (46)
- spring框架 (46)
- 框架图 (58)
- bootstrap框架 (43)
- flask框架 (53)
- quartz框架 (51)
- abp框架 (47)
- jpa框架 (47)
- laravel框架 (46)
- express框架 (43)
- springmvc框架 (49)
- 分布式事务框架 (65)
- scrapy框架 (52)
- java框架spring (43)
- grpc框架 (55)
- orm框架有哪些 (43)
- ppt框架 (48)
- 内联框架 (52)
- winform框架 (46)
- gui框架 (44)
- cad怎么画框架 (58)
- ps怎么画框架 (47)
- ssm框架实现登录注册 (49)
- oracle字符串长度 (48)
- oracle提交事务 (47)