领域驱动设计:DDD分层架构——有效降低层与层之间的依赖
ccwgpt 2024-10-13 01:28 26 浏览 0 评论
微服务架构模型有好多种,例如整洁架构、CQRS和六边形架构等等。每种架构模式虽然提出的时代和背景不同,但其核心理念都是为了设计出“高内聚低耦合”的架构,轻松实现架构演进。而DDD分层架构的出现,使架构边界变得越来越清晰,它在微服务架构模型中,占有非常重要的位置。
那DDD分层架构到底长什么样?DDD分层架构如何推动架构演进?我们该怎么转向DDD分层架构?这就是我们这一讲重点要解决的问题。
什么是DDD分层架构?
DDD的分层架构在不断发展。最早是传统的四层架构;后来四层架构有了进一步的优化,实现了各层对基础层的解耦;再后来领域层和应用层之间增加了上下文环境(Context)层,五层架构(DCI)就此形成了。
我们看一下上面这张图,在最早的传统四层架构中,基础层是被其它层依赖的,它位于最核心的位置,那按照分层架构的思想,它应该就是核心,但实际上领域层才是软件的核心,所以这种依赖是有问题的。后来我们采用了依赖倒置(Dependency inversion principle,DIP)的设计,优化了传统的四层架构,实现了各层对基础层的解耦。
我们今天讲的DDD分层架构就是优化后的四层架构。在下面这张图中,从上到下依次是:用户接口层、应用层、领域层和基础层。那DDD各层的主要职责是什么呢?下面我来逐一介绍一下。
1.用户接口层
用户接口层负责向用户显示信息和解释用户指令。这里的用户可能是:用户、程序、自动化测试和批处理脚本等等。
2.应用层
应用层是很薄的一层,理论上不应该有业务规则或逻辑,主要面向用例和流程相关的操作。但应用层又位于领域层之上,因为领域层包含多个聚合,所以它可以协调多个聚合的服务和领域对象完成服务编排和组合,协作完成业务操作。
此外,应用层也是微服务之间交互的通道,它可以调用其它微服务的应用服务,完成微服务之间的服务组合和编排。
这里我要提醒你一下:在设计和开发时,不要将本该放在领域层的业务逻辑放到应用层中实现。因为庞大的应用层会使领域模型失焦,时间一长你的微服务就会演化为传统的三层架构,业务逻辑会变得混乱。
另外,应用服务是在应用层的,它负责服务的组合、编排和转发,负责处理业务用例的执行顺序以及结果的拼装,以粗粒度的服务通过API网关向前端发布。还有,应用服务还可以进行安全认证、权限校验、事务控制、发送或订阅领域事件等。
3.领域层
领域层的作用是实现企业核心业务逻辑,通过各种校验手段保证业务的正确性。领域层主要体现领域模型的业务能力,它用来表达业务概念、业务状态和业务规则。
领域层包含聚合根、实体、值对象、领域服务等领域模型中的领域对象。
这里我要特别解释一下其中几个领域对象的关系,以便你在设计领域层的时候能更加清楚。首先,领域模型的业务逻辑主要是由实体和领域服务来实现的,其中实体会采用充血模型来实现所有与之相关的业务功能。其次,你要知道,实体和领域服务在实现业务逻辑上不是同级的,当领域中的某些功能,单一实体(或者值对象)不能实现时,领域服务就会出马,它可以组合聚合内的多个实体(或者值对象),实现复杂的业务逻辑。
4.基础层
基础层是贯穿所有层的,它的作用就是为其它各层提供通用的技术和基础服务,包括第三方工具、驱动、消息中间件、网关、文件、缓存以及数据库等。比较常见的功能还是提供数据库持久化。
基础层包含基础服务,它采用依赖倒置设计,封装基础资源服务,实现应用层、领域层与基础层的解耦,降低外部资源变化对应用的影响。
比如说,在传统架构设计中,由于上层应用对数据库的强耦合,很多公司在架构演进中最担忧的可能就是换数据库了,因为一旦更换数据库,就可能需要重写大部分的代码,这对应用来说是致命的。那采用依赖倒置的设计以后,应用层就可以通过解耦来保持独立的核心业务逻辑。当数据库变更时,我们只需要更换数据库基础服务就可以了,这样就将资源变更对应用的影响降到了最低。
DDD分层架构最重要的原则是什么?
在《实现领域驱动设计》一书中,DDD分层架构有一个重要的原则:每层只能与位于其下方的层发生耦合。
而架构根据耦合的紧密程度又可以分为两种:严格分层架构和松散分层架构。优化后的DDD分层架构模型就属于严格分层架构,任何层只能对位于其直接下方的层产生依赖。而传统的DDD分层架构则属于松散分层架构,它允许某层与其任意下方的层发生依赖。
那我们怎么选呢?综合我的经验,为了服务的可管理,我建议你采用严格分层架构。
在严格分层架构中,领域服务只能被应用服务调用,而应用服务只能被用户接口层调用,服务是逐层对外封装或组合的,依赖关系清晰。而在松散分层架构中,领域服务可以同时被应用层或用户接口层调用,服务的依赖关系比较复杂且难管理,甚至容易使核心业务逻辑外泄。
试想下,如果领域层中的某个服务发生了重大变更,那该如何通知所有调用方同步调整和升级呢?但在严格分层架构中,你只需要逐层通知上层服务就可以了。
DDD分层架构如何推动架构演进?
领域模型不是一成不变的,因为业务的变化会影响领域模型,而领域模型的变化则会影响微服务的功能和边界。那我们该如何实现领域模型和微服务的同步演进呢?
1.微服务架构的演进
通过基础篇的讲解,我们知道:领域模型中对象的层次从内到外依次是:值对象、实体、聚合和限界上下文。
实体或值对象的简单变更,一般不会让领域模型和微服务发生大的变化。但聚合的重组或拆分却可以。这是因为聚合内业务功能内聚,能独立完成特定的业务逻辑。那聚合的重组或拆分,势必就会引起业务模块和系统功能的变化了。
这里我们可以以聚合为基础单元,完成领域模型和微服务架构的演进。聚合可以作为一个整体,在不同的领域模型之间重组或者拆分,或者直接将一个聚合独立为微服务。
我们结合上图,以微服务1为例,讲解下微服务架构的演进过程:
- 当你发现微服务1中聚合a的功能经常被高频访问,以致拖累整个微服务1的性能时,我们可以把聚合a的代码,从微服务1中剥离出来,独立为微服务2。这样微服务2就可轻松应对高性能场景。
- 在业务发展到一定程度以后,你会发现微服务3的领域模型有了变化,聚合d会更适合放到微服务1的领域模型中。这时你就可以将聚合d的代码整体搬迁到微服务1中。如果你在设计时已经定义好了聚合之间的代码边界,这个过程不会太复杂,也不会花太多时间。
- 最后我们发现,在经历模型和架构演进后,微服务1已经从最初包含聚合a、b、c,演进为包含聚合b、c、d的新领域模型和微服务了。
你看,好的聚合和代码模型的边界设计,可以让你快速应对业务变化,轻松实现领域模型和微服务架构的演进。你可能还会想,那怎么实现聚合代码快速重组呢?别急,后面实战篇会详细讲解,这里我们先感知下大的实现流程。
2.微服务内服务的演进
在微服务内部,实体的方法被领域服务组合和封装,领域服务又被应用服务组合和封装。在服务逐层组合和封装的过程中,你会发现这样一个有趣的现象。
我们看下上面这张图。在服务设计时,你并不一定能完整预测有哪些下层服务会被多少个上层服务组装,因此领域层通常只提供一些原子服务,比如领域服务a、b、c。但随着系统功能增强和外部接入越来越多,应用服务会不断丰富。有一天你会发现领域服务b和c同时多次被多个应用服务调用了,执行顺序也基本一致。这时你可以考虑将b和c合并,再将应用服务中b、c的功能下沉到领域层,演进为新的领域服务(b+c)。这样既减少了服务的数量,也减轻了上层服务组合和编排的复杂度。
你看,这就是服务演进的过程,它是随着你的系统发展的,最后你会发现你的领域模型会越来越精炼,越来越能适应需求的快速变化。
三层架构如何演进到DDD分层架构?
综合前面的讲解,相信DDD分层架构的优势,你心里也有个谱了。我们不妨总结一下最最重要两点。
首先,由于层间松耦合,我们可以专注于本层的设计,而不必关心其它层,也不必担心自己的设计会影响其它层。可以说,DDD成功地降低了层与层之间的依赖。
其次,分层架构使得程序结构变得清晰,升级和维护更加容易。我们修改某层代码时,只要本层的接口参数不变,其它层可以不必修改。即使本层的接口发生变化,也只影响相邻的上层,修改工作量小且错误可以控制,不会带来意外的风险。
那我们该怎样转向DDD分层架构呢?不妨看看下面这个过程。
传统企业应用大多是单体架构,而单体架构则大多是三层架构。三层架构解决了程序内代码间调用复杂、代码职责不清的问题,但这种分层是逻辑概念,在物理上它是中心化的集中式架构,并不适合分布式微服务架构。
DDD分层架构中的要素其实和三层架构类似,只是在DDD分层架构中,这些要素被重新归类,重新划分了层,确定了层与层之间的交互规则和职责边界。
我们看一下上面这张图,分析一下从三层架构向DDD分层架构演进的过程。
首先,你要清楚,三层架构向DDD分层架构演进,主要发生在业务逻辑层和数据访问层。
DDD分层架构在用户接口层引入了DTO,给前端提供了更多的可使用数据和更高的展示灵活性。
DDD分层架构对三层架构的业务逻辑层进行了更清晰的划分,改善了三层架构核心业务逻辑混乱,代码改动相互影响大的情况。DDD分层架构将业务逻辑层的服务拆分到了应用层和领域层。应用层快速响应前端的变化,领域层实现领域模型的能力。
另外一个重要的变化发生在数据访问层和基础层之间。三层架构数据访问采用DAO方式;DDD分层架构的数据库等基础资源访问,采用了仓储(Repository)设计模式,通过依赖倒置实现各层对基础资源的解耦。
仓储又分为两部分:仓储接口和仓储实现。仓储接口放在领域层中,仓储实现放在基础层。原来三层架构通用的第三方工具包、驱动、Common、Utility、Config等通用的公共的资源类统一放到了基础层。
最后,我想说,传统三层架构向DDD分层架构的演进,体现的正是领域驱动设计思想的演进。希望你也感受到了,并尝试将其应用在自己的架构设计中。
总结
今天我们主要讲了DDD的分层架构,它作为微服务的核心框架,我想怎么强调其重要性都是不过分的。
DDD分层架构包含用户接口层、应用层、领域层和基础层。通过这些层次划分,我们可以明确微服务各层的职能,划定各领域对象的边界,确定各领域对象的协作方式。这种架构既体现了微服务设计和架构演进的需求,又很好地融入了领域模型的概念,二者无缝结合,相信会给你的微服务设计带来不一样的感觉。
相关推荐
- 十分钟让你学会LNMP架构负载均衡(impala负载均衡)
-
业务架构、应用架构、数据架构和技术架构一、几个基本概念1、pv值pv值(pageviews):页面的浏览量概念:一个网站的所有页面,在一天内,被浏览的总次数。(大型网站通常是上千万的级别)2、u...
- AGV仓储机器人调度系统架构(agv物流机器人)
-
系统架构层次划分采用分层模块化设计,分为以下五层:1.1用户接口层功能:提供人机交互界面(Web/桌面端),支持任务下发、实时监控、数据可视化和报警管理。模块:任务管理面板:接收订单(如拣货、...
- 远程热部署在美团的落地实践(远程热点是什么意思)
-
Sonic是美团内部研发设计的一款用于热部署的IDEA插件,本文其实现原理及落地的一些技术细节。在阅读本文之前,建议大家先熟悉一下Spring源码、SpringMVC源码、SpringBoot...
- springboot搭建xxl-job(分布式任务调度系统)
-
一、部署xxl-job服务端下载xxl-job源码:https://gitee.com/xuxueli0323/xxl-job二、导入项目、创建xxl_job数据库、修改配置文件为自己的数据库三、启动...
- 大模型:使用vLLM和Ray分布式部署推理应用
-
一、vLLM:面向大模型的高效推理框架1.核心特点专为推理优化:专注于大模型(如GPT-3、LLaMA)的高吞吐量、低延迟推理。关键技术:PagedAttention:类似操作系统内存分页管理,将K...
- 国产开源之光【分布式工作流调度系统】:DolphinScheduler
-
DolphinScheduler是一个开源的分布式工作流调度系统,旨在帮助用户以可靠、高效和可扩展的方式管理和调度大规模的数据处理工作流。它支持以图形化方式定义和管理工作流,提供了丰富的调度功能和监控...
- 简单可靠高效的分布式任务队列系统
-
#记录我的2024#大家好,又见面了,我是GitHub精选君!背景介绍在系统访问量逐渐增大,高并发、分布式系统成为了企业技术架构升级的必由之路。在这样的背景下,异步任务队列扮演着至关重要的角色,...
- 虚拟服务器之间如何分布式运行?(虚拟服务器部署)
-
在云计算和虚拟化技术快速发展的今天,传统“单机单任务”的服务器架构早已难以满足现代业务对高并发、高可用、弹性伸缩和容错容灾的严苛要求。分布式系统应运而生,并成为支撑各类互联网平台、企业信息系统和A...
- 一文掌握 XXL-Job 的 6 大核心组件
-
XXL-Job是一个分布式任务调度平台,其核心组件主要包括以下部分,各组件相互协作实现高效的任务调度与管理:1.调度注册中心(RegistryCenter)作用:负责管理调度器(Schedule...
- 京东大佬问我,SpringBoot中如何做延迟队列?单机与分布式如何做?
-
京东大佬问我,SpringBoot中如何做延迟队列?单机如何做?分布式如何做呢?并给出案例与代码分析。嗯,用户问的是在SpringBoot中如何实现延迟队列,单机和分布式环境下分别怎么做。这个问题其实...
- 企业级项目组件选型(一)分布式任务调度平台
-
官网地址:https://www.xuxueli.com/xxl-job/能力介绍架构图安全性为提升系统安全性,调度中心和执行器进行安全性校验,双方AccessToken匹配才允许通讯;调度中心和执...
- python多进程的分布式任务调度应用场景及示例
-
多进程的分布式任务调度可以应用于以下场景:分布式爬虫:importmultiprocessingimportrequestsdefcrawl(url):response=re...
- SpringBoot整合ElasticJob实现分布式任务调度
-
介绍ElasticJob是面向互联网生态和海量任务的分布式调度解决方案,由两个相互独立的子项目ElasticJob-Lite和ElasticJob-Cloud组成。它通过弹性调度、资源管控、...
- 分布式可视化 DAG 任务调度系统 Taier 的整体流程分析
-
Taier作为袋鼠云的开源项目之一,是一个分布式可视化的DAG任务调度系统。旨在降低ETL开发成本,提高大数据平台稳定性,让大数据开发人员可以在Taier直接进行业务逻辑的开发,而不用关...
- SpringBoot任务调度:@Scheduled与TaskExecutor全面解析
-
一、任务调度基础概念1.1什么是任务调度任务调度是指按照预定的时间计划或特定条件自动执行任务的过程。在现代应用开发中,任务调度扮演着至关重要的角色,它使得开发者能够自动化处理周期性任务、定时任务和异...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- MVC框架 (46)
- spring框架 (46)
- 框架图 (58)
- flask框架 (53)
- quartz框架 (51)
- abp框架 (47)
- jpa框架 (47)
- laravel框架 (46)
- springmvc框架 (49)
- 分布式事务框架 (65)
- scrapy框架 (56)
- shiro框架 (61)
- 定时任务框架 (56)
- java日志框架 (61)
- JAVA集合框架 (47)
- grpc框架 (55)
- ppt框架 (48)
- 内联框架 (52)
- winform框架 (46)
- gui框架 (44)
- cad怎么画框架 (58)
- ps怎么画框架 (47)
- ssm框架实现登录注册 (49)
- oracle字符串长度 (48)
- oracle提交事务 (47)