百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

IM通讯协议专题学习(十):初识 Thrift 序列化协议

ccwgpt 2024-10-15 08:57 26 浏览 0 评论

本文由字节跳动技术团队杨晨曦分享,本文有修订和改动。

1、引言

本文将带你一起初步认识Thrift的序列化协议,包括Binary协议、Compact协议(类似于Protobuf)、JSON协议,希望能为你的通信协议格式选型带来参考。

2、系列文章

本文是系列文章中的第 10 篇,本系列总目录如下:

《IM通讯协议专题学习(一):Protobuf从入门到精通,一篇就够!》

《IM通讯协议专题学习(二):快速理解Protobuf的背景、原理、使用、优缺点》

《IM通讯协议专题学习(三):由浅入深,从根上理解Protobuf的编解码原理》

《IM通讯协议专题学习(四):从Base64到Protobuf,详解Protobuf的数据编码原理》

《IM通讯协议专题学习(五):Protobuf到底比JSON快几倍?全方位实测!》

《IM通讯协议专题学习(六):手把手教你如何在Android上从零使用Protobuf》

《IM通讯协议专题学习(七):手把手教你如何在NodeJS中从零使用Protobuf》

《IM通讯协议专题学习(八):金蝶随手记团队的Protobuf应用实践(原理篇)》

《IM通讯协议专题学习(九):手把手教你如何在iOS上从零使用Protobuf》

《IM通讯协议专题学习(十):初识 Thrift 序列化协议》(* 本文)

另外:如果您还打算系统地学习IM开发,建议阅读《新手入门一篇就够:从零开发移动端IM》。

3、 概述

Thrift 是 Facebook 开源的一个高性能,轻量级 RPC 服务框架,是一套全栈式的 RPC 解决方案,包含序列化与服务通信能力,并支持跨平台/跨语言。

Thrift整体架构如图所示:

Thrift 软件栈定义清晰,各层的组件松耦合、可插拔,能够根据业务场景灵活组合。

如图所示:

Thrift 本身是一个比较大的话题,本篇文章不会涉及到Thrift的全部内容,只会涉及到其中的序列化协议。

4、 Binary协议

4.1消息格式

这里通过一个示例对 Binary 消息格式进行直观的展示。

IDL 定义如下:

//接口

service SupService {

SearchDepartmentByKeywordResponse SearchDepartmentByKeyword(

1: SearchDepartmentByKeywordRequest request)

}

//请求

struct SearchDepartmentByKeywordRequest {

1: optional string Keyword

2: optional i32 Limit

3: optional i32 Offset

}

//假设request的payload如下:

{

Keyword: "lark",

Limit: 50,

Offset: nil,

}

4.2编码简图

4.3编码具体内容

抓包拿到编码后的字节流(转成了十进制,方便大家看)。

/* 接口名长度 */ 0 0 0 25

/* 接口名 */ 83 101 97 114 99 104 68 101 112 97 114 116

109 101 110 116 66 121 75 101 121 119 111

114 100

/* 消息类型 */ 1

/* 消息序号 */ 0 0 0 1

/* keyword 字段类型 */ 11

/* keyword 字段ID*/ 0 1

/* keyword len */ 0 0 0 4

/* keyword value */ 108 97 114 107

/* limit 字段类型 */ 8

/* limit 字段ID*/ 0 2

/* limit value */ 0 0 0 50

/* 字段终止符 */ 0

4.4编码含义

1)消息头:

msg_type(消息类型),包含四种类型:

  • 1)Call:客户端消息。调用远程方法,并且期待对方发送响应;
  • 2)OneWay:客户端消息。调用远程方法,不期待响应;
  • 3)Reply:服务端消息。正常响应;
  • 4)Exception:服务端消息。异常响应。

msg_seq_id消息序号):

  • 1)客户端使用消息序号来处理响应的失序到达,实现请求和响应的匹配;
  • 2)服务端不需要检查该序列号,也不能对序列号有任何的逻辑依赖,只需要响应的时候将其原样返回即可。

2)消息体:

消息体分为两种编码模式:

  • 1)定长类型 -> T-V 模式,即:字段类型 + 字段序号 + 字段值;
  • 2)变长类型 -> T-L-V 模式,即:字段类型 + 字段序号 + 字段长度 + 字段值。

具体是:

  • 1)field_type:字段类型,包括 String、I64、Struct、Stop 等;
  • 2)fied_id:字段序号,解码时通过序号确定字段;
  • 3)len:字段长度,用于变长类型,如 String;
  • 4)value:字段值。

字段类型有两个作用:

  • 1)Stop 类型用于停止嵌套解析;
  • 2)非 Stop 类型用于 Skip(Skip 操作是跳过当前字段,会在「常见问题 - 兼容性」进行讲解)。

4.5数据格式

定长数据类型:

变长数据类型:

5、Compact 协议

5.1概述

Compact 协议是二进制压缩协议,在大部分字段的编码方式上与 Binary 协议保持一致。

区别在于整数类型(包括变长类型的长度)采用了先 zigzag 编码 ,再 varint 压缩编码实现,最大化节省空间开销。

那么问题来了,varint 和 zigzag 是什么?

5.2varint 编码

解决的问题:定长存储的整数类型绝对值较小时空间浪费大。

据统计,RPC 通信时大部分时候传递的整数值都很小,如果使用定长存储会很浪费。

举个 🌰,对 i32 类型的 7 进行编码,可以说前面 3 个字节都浪费了:

00000000 00000000 00000000 00000111

解决思路:将整数类型由定长存储转为变长存储(能用 1 个字节存下就坚决不用 2 个字节)

原理并不复杂,就是将整数按 7bit 分段,每个字节的最高位作为标识位,标识后一个字节是否属于该数据。1 代表后面的字节还是属于当前数据,0 代表这是当前数据的最后一个字节。

以 i32 类型,数值 955 为例,可以看出,由原来的 4 字节压缩到了 2 字节:

binary编码: 00000000 00000000 00000011 10111011

切分: 0000 0000000 0000000 0000111 0111011

compact编码: 00000111 10111011

当然,varint 编码同样存在缺陷,那就是存储大数的时候,反而会比 binary 的空间开销更大:本来 4 个字节存下的数可能需要 5 个字节,8 个字节存下的数可能需要 10 个字节。

5.3zigzag 编码

解决的问题:绝对值较小的负数经过 varint 编码后空间开销较大 举个 🌰,i32 类型的负数(-11)

原码: 10000000 00000000 00000000 00001011

反码: 11111111 11111111 11111111 11110100

补码: 11111111 11111111 11111111 11110101

varint编码: 00001111 11111111 11111111 11111111 11110101

显然,对于绝对值较小的负数,用 varint 编码以后前导 1 过多,难以压缩,空间开销比 binary 编码还大。

解决思路:负数转正数,从而把前导 1 转成前导 0,便于 varint 压缩

算法公式 & 步骤 & 示范:

//算法公式

32位: (n << 1) ^ (n >> 31)

64位: (n << 1) ^ (n >> 63)

/*

* 算法步骤:

* 1. 不分正负:符号位后置,数值位前移

* 2. 对于负数:符号位不变,数值位取反

*/

//示例

负数(-11)

补码: 11111111 11111111 11111111 11110101

符号位后置,数值位前移: 11111111 11111111 11111111 11101011

符号位不变,数值位取反(21): 00000000 00000000 00000000 00010101

正数(11)

补码: 00000000 00000000 00000000 00010101

符号位后置,数值位前移(22): 00000000 00000000 00000000 00101010

奇怪的知识:为什么取名叫 zigzag?

因为这个算法将负数编码成正奇数,正数编码成偶数。最后效果是正负数穿插向前。

就像这样:

编码前 编码后

0 0

-1 1

1 2

-2 3

2 4

6、Json 协议

Thrift 不仅支持二进制序列化协议,也支持 Json 这种文本协议。

数据格式:

/* bool、i8、i16、i32、i64、double、string */

"编号": {

"类型": "值"

}

//示例

"1": {

"str": "keyword"

}

/* struct */

"编号": {

"rec": {

"成员编号": {

"成员类型": "成员值"

},

...

}

}

//示例

"1": {

"rec": {

"1": {

"i32": 50

}

}

}

/* map */

"编号": {

"map": [

"键类型",

"值类型",

元素个数,

"键1",

"值1",

...

"键n",

"值n"

]

}

//示例

"6": {

"map": [

"i64",

"str",

1,

666,

"mapValue"

]

}

/* List */

"编号": {

"set/lst": [

"值类型",

元素个数,

"ele1",

"ele2",

"elen"

]

}

//示例

"2": {

"lst": [

"str",

2,

"lark","keyword"]

}

7、修改字段类型导致协议解析不一致的通信问题

现象:A 服务访问 B 服务,业务逻辑短时间处理完,但整个请求 15s 超时,必现。

直接原因:IDL 类型被修改;并且只升级了服务端(B 服务),没升级客户端(A 服务)。

本质原因:string 是变长编码,i64 是定长编码。由于客户端没有升级,所以反序列化的时候,会把 signTime 当做 string 类型来解析。而变长编码是 T-L-V 模式,所以解析的时候会把 signTime 的低位 4 字节翻译成 string 的 length。

signTime 是时间戳,大整数,比如:1624206147902,转成二进制为:

100000000 00000000 00000001 01111010 00101010 00111011 00000001 00111110

低位 4 字节转成十进制为:378 。

也就是要再读 378 个字节作为 SignTime 的值,这已经超过了整个 payload 的大小,最终导致 Socket 读超时。

注:修改类型不一定就会导致超时,如果 value 的值比较小,解析到的 length 也比较小,能够保证读完。

但是错误的解析可能会导致各种预期之外的情况,包括:

  • 1)乱码;
  • 2)空值;
  • 3)报错:unknown data type xxx (skip 异常)。

8、通信协议带来的常见问题

8.1兼容性

1)增加字段:

通过 skip 来跳过增加的字段,从而保证兼容性。

2)删除字段:

编译生成的解析代码是基于 field_id 的 switch-case 结构,语法结构上直接具备兼容性。

3)修改字段名:

不破坏兼容性,因为 binary 协议不会对 name 进行编码。

8.2Exception

Thrift 有两种 Exception:

  • 1)一种是框架内置的异常;
  • 2)一种是 IDL 自定义的异常。

框架内置的异常包括:

  • 1)方法名错误;
  • 2)消息序列号错误;
  • 3)协议错误。

这些异常由框架捕获并封装成 Exception 消息,反序列化时会转成 error 并抛给上层。

逻辑如下:

另一种异常是由用户在 IDL 中自定义的,关键字是 exception,用法上跟 struct 没有太大区别。

8.3optional、require 实现原理

optional 表示字段可填,require 表示必填。

字段被标识为 optional 之后:

  • 1)基本类型会被编译为指针类型;
  • 2)序列化代码会做空值判断,如果字段为空,则不会被编码。

字段被标识为 require 之后:

  • 1)基本类型会被编译为非指针类型(复合类型 optional 和 require 没区别);
  • 2)序列化不会做空值判断,字段一定会被编码。如果没有显式赋值,就编码默认值(默认空值,或者 IDL 显式指定的默认值)。

9、参考资料

[1] Protobuf从入门到精通,一篇就够!

[2] 如何选择即时通讯应用的数据传输格式

[3] 强列建议将Protobuf作为你的即时通讯应用数据传输格式

[4] APP与后台通信数据格式的演进:从文本协议到二进制协议

[5] 面试必考,史上最通俗大小端字节序详解

[6] 移动端IM开发需要面对的技术问题(含通信协议选择)

[7] 简述移动端IM开发的那些坑:架构设计、通信协议和客户端

[8] 理论联系实际:一套典型的IM通信协议设计详解

[9] 58到家实时消息系统的协议设计等技术实践分享

[10] 金蝶随手记团队的Protobuf应用实践(原理篇)

[11] 新手入门一篇就够:从零开发移动端IM


技术交流:

- 移动端IM开发入门文章:《新手入门一篇就够:从零开发移动端IM》

- 开源IM框架源码:https://github.com/JackJiang2011/MobileIMSDK(备用地址点此)

(本文已同步发布于:http://www.52im.net/thread-4576-1-1.html)

相关推荐

RACI矩阵:项目管理中的角色与责任分配利器

作者:赵小燕RACI矩阵RACI矩阵是项目管理中的一种重要工具,旨在明确团队在各个任务中的角色和职责。通过将每个角色划分为负责人、最终责任人、咨询人和知情人四种类型,RACI矩阵确保每个人都清楚自己...

在弱矩阵组织中,如何做好项目管理工作?「慕哲制图」

慕哲出品必属精品系列在弱矩阵组织中,如何做好项目管理工作?【慕哲制图】-------------------------------慕哲制图系列0:一图掌握项目、项目集、项目组合、P2、商业分析和NP...

Scrum模式:每日站会(Daily Scrum)

定义每日站会(DailyScrum)是一个Scrum团队在进行Sprint期间的日常会议。这个会议的主要目的是为了应对Sprint计划中的不断变化,确保团队能够有效应对挑战并达成Sprint目标。为...

大家都在谈论的敏捷开发&amp;Scrum,到底是什么?

敏捷开发作为一种开发模式,近年来深受研发团队欢迎,与瀑布式开发相比,敏捷开发更轻量,灵活性更高,在当下多变环境下,越来越多团队选择敏捷开发。什么是敏捷?敏捷是一种在不确定和变化的环境中,通过创造和响应...

敏捷与Scrum是什么?(scrum敏捷开发是什么)

敏捷是一种思维模式和哲学,它描述了敏捷宣言中的一系列原则。另一方面,Scrum是一个框架,规定了实现这种思维方式的角色,事件,工件和规则/指南。换句话说,敏捷是思维方式,Scrum是规定实施敏捷哲学的...

敏捷项目管理与敏捷:Scrum流程图一览

敏捷开发中的Scrum流程通常可以用一个简单的流程图来表示,以便更清晰地展示Scrum框架的各个阶段和活动。以下是一个常见的Scrum流程图示例:这个流程图涵盖了Scrum框架的主要阶段和活动,其中包...

一张图掌握项目生命周期模型及Scrum框架

Mockito 的最佳实践(mock方法)

记得以前面试的时候,面试官问我,平常开发过程中自己会不会测试?我回答当然会呀,自己写的代码怎么不测呢。现在想想我好像误会他的意思了,他应该是想问我关于单元测试,集成测试以及背后相关的知识,然而当时说到...

EffectiveJava-5-枚举和注解(java枚举的作用与好处)

用enum代替int常量1.int枚举:引入枚举前,一般是声明一组具名的int常量,每个常量代表一个类型成员,这种方法叫做int枚举模式。int枚举模式是类型不安全的,例如下面两组常量:性别和动物种...

Maven 干货 全篇共:28232 字。预计阅读时间:110 分钟。建议收藏!

Maven简介Maven这个词可以翻译为“知识的积累”,也可以翻译为“专家”或“内行”。Maven是一个跨平台的项目管理工具。主要服务于基于Java平台的项目构建、依赖管理和项目信息管理。仔...

Java单元测试框架PowerMock学习(java单元测试是什么意思)

前言高德的技术大佬在谈论方法论时说到:“复杂的问题要简单化,简单的问题要深入化。”这句话让我感触颇深,这何尝不是一套编写代码的方法——把一个复杂逻辑拆分为许多简单逻辑,然后把每一个简单逻辑进行深入实现...

Spring框架基础知识-第六节内容(Spring高级话题)

Spring高级话题SpringAware基本概念Spring的依赖注入的最大亮点是你所有的Bean对Spring容器的存在是没有意识的。但是在实际的项目中,你的Bean必须要意识到Spring容器...

Java单元测试浅析(JUnit+Mockito)

作者:京东物流秦彪1.什么是单元测试(1)单元测试环节:测试过程按照阶段划分分为:单元测试、集成测试、系统测试、验收测试等。相关含义如下:1)单元测试:针对计算机程序模块进行输出正确性检验工作...

揭秘Java代码背后的质检双侠:JUnit与Mockito!

你有没有发现,现在我们用的手机App、逛的网站,甚至各种智能设备,功能越来越复杂,但用起来却越来越顺畅,很少遇到那种崩溃、卡顿的闹心事儿?这背后可不是程序员一拍脑袋写完代码就完事儿了!他们需要一套严谨...

单元测试框架哪家强?Junit来帮忙!

大家好,在前面的文章中,给大家介绍了以注解和XML的方式分别实现IOC和依赖注入。并且我们定义了一个测试类,通过测试类来获取到了容器中的Bean,具体的测试类定义如下:@Testpublicvoid...

取消回复欢迎 发表评论: