百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

阿里Java三面:分布式延时任务方案解析,万字长文一篇点通你

ccwgpt 2024-10-16 08:08 46 浏览 0 评论

前言

在开发中,往往会遇到一些关于延时任务的需求。例如

  • 生成订单30分钟未支付,则自动取消
  • 生成订单60秒后,给用户发短信

对上述的任务,我们给一个专业的名字来形容,那就是延时任务。那么这里就会产生一个问题,这个延时任务定时任务的区别究竟在哪里呢?一共有如下几点区别

  1. 定时任务有明确的触发时间,延时任务没有
  2. 定时任务有执行周期,而延时任务在某事件触发后一段时间内执行,没有执行周期
  3. 定时任务一般执行的是批处理操作是多个任务,而延时任务一般是单个任务

下面,我们以判断订单是否超时为例,进行方案分析

方案分析

(1)数据库轮询

思路

该方案通常是在小型项目中使用,即通过一个线程定时地去扫描数据库,通过订单时间来判断是否有超时的订单,然后进行update或delete等操作

实现

博主当年早期是用quartz来实现的(实习那会的事),简单介绍一下
maven项目引入一个依赖如下所示

<dependency>
    <groupId>org.quartz-scheduler</groupId>
    <artifactId>quartz</artifactId>
    <version>2.2.2</version>
</dependency>

调用Demo类MyJob如下所示

package com.rjzheng.delay1;
import org.quartz.JobBuilder;
import org.quartz.JobDetail;
import org.quartz.Scheduler;
import org.quartz.SchedulerException;
import org.quartz.SchedulerFactory;
import org.quartz.SimpleScheduleBuilder;
import org.quartz.Trigger;
import org.quartz.TriggerBuilder;
import org.quartz.impl.StdSchedulerFactory;
import org.quartz.Job;
import org.quartz.JobExecutionContext;
import org.quartz.JobExecutionException;

public class MyJob implements Job {
    public void execute(JobExecutionContext context)
            throws JobExecutionException {
        System.out.println("要去数据库扫描啦。。。");
    }

    public static void main(String[] args) throws Exception {
        // 创建任务
        JobDetail jobDetail = JobBuilder.newJob(MyJob.class)
                .withIdentity("job1", "group1").build();
        // 创建触发器 每3秒钟执行一次
        Trigger trigger = TriggerBuilder
                .newTrigger()
                .withIdentity("trigger1", "group3")
                .withSchedule(
                        SimpleScheduleBuilder.simpleSchedule()
                                .withIntervalInSeconds(3).repeatForever())
                .build();
        Scheduler scheduler = new StdSchedulerFactory().getScheduler();
        // 将任务及其触发器放入调度器
        scheduler.scheduleJob(jobDetail, trigger);
        // 调度器开始调度任务
        scheduler.start();
    }
}

运行代码,可发现每隔3秒,输出如下

要去数据库扫描啦。。。

优缺点

优点:简单易行,支持集群操作
缺点:(1)对服务器内存消耗大
?? (2)存在延迟,比如你每隔3分钟扫描一次,那最坏的延迟时间就是3分钟
?? (3)假设你的订单有几千万条,每隔几分钟这样扫描一次,数据库损耗极大

(2)JDK的延迟队列

思路

该方案是利用JDK自带的DelayQueue来实现,这是一个无界阻塞队列,该队列只有在延迟期满的时候才能从中获取元素,放入DelayQueue中的对象,是必须实现Delayed接口的。
DelayedQueue实现工作流程如下图所示

其中Poll():获取并移除队列的超时元素,没有则返回空;take():获取并移除队列的超时元素,如果没有则wait当前线程,直到有元素满足超时条件,返回结果。

实现

定义一个类OrderDelay实现Delayed,代码如下

package com.rjzheng.delay2;

import java.util.concurrent.Delayed;
import java.util.concurrent.TimeUnit;

public class OrderDelay implements Delayed {

    private String orderId;
    private long timeout;

    OrderDelay(String orderId, long timeout) {
        this.orderId = orderId;
        this.timeout = timeout + System.nanoTime();
    }

    public int compareTo(Delayed other) {
        if (other == this)
            return 0;
        OrderDelay t = (OrderDelay) other;
        long d = (getDelay(TimeUnit.NANOSECONDS) - t
                .getDelay(TimeUnit.NANOSECONDS));
        return (d == 0) ? 0 : ((d < 0) ? -1 : 1);
    }

    // 返回距离你自定义的超时时间还有多少
    public long getDelay(TimeUnit unit) {
        return unit.convert(timeout - System.nanoTime(), TimeUnit.NANOSECONDS);
    }

    void print() {
        System.out.println(orderId+"编号的订单要删除啦。。。。");
    }
}

运行的测试Demo为,我们设定延迟时间为3秒

package com.rjzheng.delay2;

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.DelayQueue;
import java.util.concurrent.TimeUnit;

public class DelayQueueDemo {
     public static void main(String[] args) {  
            // TODO Auto-generated method stub  
            List<String> list = new ArrayList<String>();  
            list.add("00000001");  
            list.add("00000002");  
            list.add("00000003");  
            list.add("00000004");  
            list.add("00000005");  
            DelayQueue<OrderDelay> queue = new DelayQueue<OrderDelay>();  
            long start = System.currentTimeMillis();  
            for(int i = 0;i<5;i++){  
                //延迟三秒取出
                queue.put(new OrderDelay(list.get(i),  
                        TimeUnit.NANOSECONDS.convert(3, TimeUnit.SECONDS)));  
                    try {  
                         queue.take().print();  
                         System.out.println("After " +   
                                 (System.currentTimeMillis()-start) + " MilliSeconds");  
                } catch (InterruptedException e) {  
                    // TODO Auto-generated catch block  
                    e.printStackTrace();  
                }  
            }  
        }  

}

输出如下

00000001编号的订单要删除啦。。。。
After 3003 MilliSeconds
00000002编号的订单要删除啦。。。。
After 6006 MilliSeconds
00000003编号的订单要删除啦。。。。
After 9006 MilliSeconds
00000004编号的订单要删除啦。。。。
After 12008 MilliSeconds
00000005编号的订单要删除啦。。。。
After 15009 MilliSeconds

可以看到都是延迟3秒,订单被删除

优缺点

优点:效率高,任务触发时间延迟低。
缺点:(1)服务器重启后,数据全部消失,怕宕机
?? (2)集群扩展相当麻烦
?? (3)因为内存条件限制的原因,比如下单未付款的订单数太多,那么很容易就出现OOM异常
?? (4)代码复杂度较高

(3)时间轮算法

思路

先上一张时间轮的图(这图到处都是啦)

时间轮算法可以类比于时钟,如上图箭头(指针)按某一个方向按固定频率轮动,每一次跳动称为一个 tick。这样可以看出定时轮有个3个重要的属性参数,ticksPerWheel(一轮的tick数),tickDuration(一个tick的持续时间)以及 timeUnit(时间单位),例如当ticksPerWheel=60,tickDuration=1,timeUnit=秒,这就和现实中的始终的秒针走动完全类似了。

如果当前指针指在1上面,我有一个任务需要4秒以后执行,那么这个执行的线程回调或者消息将会被放在5上。那如果需要在20秒之后执行怎么办,由于这个环形结构槽数只到8,如果要20秒,指针需要多转2圈。位置是在2圈之后的5上面(20 % 8 + 1)

实现

我们可以用Netty的HashedWheelTimer来实现

给Pom加上下面的依赖。

<dependency>
    <groupId>io.netty</groupId>
    <artifactId>netty-all</artifactId>
    <version>4.1.24.Final</version>
</dependency>

测试代码HashedWheelTimerTest如下所示

package com.rjzheng.delay3;

import io.netty.util.HashedWheelTimer;
import io.netty.util.Timeout;
import io.netty.util.Timer;
import io.netty.util.TimerTask;

import java.util.concurrent.TimeUnit;

public class HashedWheelTimerTest {
    static class MyTimerTask implements TimerTask{
        boolean flag;
        public MyTimerTask(boolean flag){
            this.flag = flag;
        }
        public void run(Timeout timeout) throws Exception {
            // TODO Auto-generated method stub
             System.out.println("要去数据库删除订单了。。。。");
             this.flag =false;
        }
    }
    public static void main(String[] argv) {
        MyTimerTask timerTask = new MyTimerTask(true);
        Timer timer = new HashedWheelTimer();
        timer.newTimeout(timerTask, 5, TimeUnit.SECONDS);
        int i = 1;
        while(timerTask.flag){
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
            System.out.println(i+"秒过去了");
            i++;
        }
    }
}

输出如下

1秒过去了
2秒过去了
3秒过去了
4秒过去了
5秒过去了
要去数据库删除订单了。。。。
6秒过去了

优缺点

优点:效率高,任务触发时间延迟时间比delayQueue低,代码复杂度比delayQueue低。
缺点:(1)服务器重启后,数据全部消失,怕宕机
?? (2)集群扩展相当麻烦
?? (3)因为内存条件限制的原因,比如下单未付款的订单数太多,那么很容易就出现OOM异常

(4)redis缓存

思路一

利用redis的zset,zset是一个有序集合,每一个元素(member)都关联了一个score,通过score排序来取集合中的值
zset常用命令
添加元素:ZADD key score member [[score member] [score member] ...]
按顺序查询元素:ZRANGE key start stop [WITHSCORES]
查询元素score:ZSCORE key member
移除元素:ZREM key member [member ...]

测试如下

# 添加单个元素

redis> ZADD page_rank 10 google.com
(integer) 1

# 添加多个元素

redis> ZADD page_rank 9 baidu.com 8 bing.com
(integer) 2

redis> ZRANGE page_rank 0 -1 WITHSCORES
1) "bing.com"
2) "8"
3) "baidu.com"
4) "9"
5) "google.com"
6) "10"

# 查询元素的score值
redis> ZSCORE page_rank bing.com
"8"

# 移除单个元素

redis> ZREM page_rank google.com
(integer) 1

redis> ZRANGE page_rank 0 -1 WITHSCORES
1) "bing.com"
2) "8"
3) "baidu.com"
4) "9"

那么如何实现呢?我们将订单超时时间戳与订单号分别设置为score和member,系统扫描第一个元素判断是否超时,具体如下图所示

实现一

package com.rjzheng.delay4;

import java.util.Calendar;
import java.util.Set;

import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.Tuple;

public class AppTest {
    private static final String ADDR = "127.0.0.1";
    private static final int PORT = 6379;
    private static JedisPool jedisPool = new JedisPool(ADDR, PORT);

    public static Jedis getJedis() {
       return jedisPool.getResource();
    }

    //生产者,生成5个订单放进去
    public void productionDelayMessage(){
        for(int i=0;i<5;i++){
            //延迟3秒
            Calendar cal1 = Calendar.getInstance();
            cal1.add(Calendar.SECOND, 3);
            int second3later = (int) (cal1.getTimeInMillis() / 1000);
            AppTest.getJedis().zadd("OrderId", second3later,"OID0000001"+i);
            System.out.println(System.currentTimeMillis()+"ms:redis生成了一个订单任务:订单ID为"+"OID0000001"+i);
        }
    }

    //消费者,取订单
    public void consumerDelayMessage(){
        Jedis jedis = AppTest.getJedis();
        while(true){
            Set<Tuple> items = jedis.zrangeWithScores("OrderId", 0, 1);
            if(items == null || items.isEmpty()){
                System.out.println("当前没有等待的任务");
                try {
                    Thread.sleep(500);
                } catch (InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
                continue;
            }
            int  score = (int) ((Tuple)items.toArray()[0]).getScore();
            Calendar cal = Calendar.getInstance();
            int nowSecond = (int) (cal.getTimeInMillis() / 1000);
            if(nowSecond >= score){
                String orderId = ((Tuple)items.toArray()[0]).getElement();
                jedis.zrem("OrderId", orderId);
                System.out.println(System.currentTimeMillis() +"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);
            }
        }
    }

    public static void main(String[] args) {
        AppTest appTest =new AppTest();
        appTest.productionDelayMessage();
        appTest.consumerDelayMessage();
    }

}

此时对应输出如下

1525086085261ms:redis生成了一个订单任务:订单ID为OID00000010
1525086085263ms:redis生成了一个订单任务:订单ID为OID00000011
1525086085266ms:redis生成了一个订单任务:订单ID为OID00000012
1525086085268ms:redis生成了一个订单任务:订单ID为OID00000013
1525086085270ms:redis生成了一个订单任务:订单ID为OID00000014
1525086088000ms:redis消费了一个任务:消费的订单OrderId为OID00000010
1525086088001ms:redis消费了一个任务:消费的订单OrderId为OID00000011
1525086088002ms:redis消费了一个任务:消费的订单OrderId为OID00000012
1525086088003ms:redis消费了一个任务:消费的订单OrderId为OID00000013
1525086088004ms:redis消费了一个任务:消费的订单OrderId为OID00000014
当前没有等待的任务
当前没有等待的任务
当前没有等待的任务

可以看到,几乎都是3秒之后,消费订单。然而,这一版存在一个致命的硬伤,在高并发条件下,多消费者会取到同一个订单号,我们上测试代码ThreadTest

package com.rjzheng.delay4;


import java.util.concurrent.CountDownLatch;

public class ThreadTest {
    private static final int threadNum = 10;
    private static CountDownLatch cdl = new CountDownLatch(threadNum);
    static class DelayMessage implements Runnable{
        public void run() {
            try {
                cdl.await();
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
            AppTest appTest =new AppTest();
            appTest.consumerDelayMessage();
        }
    }
    public static void main(String[] args) {
        AppTest appTest =new AppTest();
        appTest.productionDelayMessage();
        for(int i=0;i<threadNum;i++){
            new Thread(new DelayMessage()).start();
            cdl.countDown();
        }
    }
}

输出如下所示

1525087157727ms:redis生成了一个订单任务:订单ID为OID00000010
1525087157734ms:redis生成了一个订单任务:订单ID为OID00000011
1525087157738ms:redis生成了一个订单任务:订单ID为OID00000012
1525087157747ms:redis生成了一个订单任务:订单ID为OID00000013
1525087157753ms:redis生成了一个订单任务:订单ID为OID00000014
1525087160009ms:redis消费了一个任务:消费的订单OrderId为OID00000010
1525087160011ms:redis消费了一个任务:消费的订单OrderId为OID00000010
1525087160012ms:redis消费了一个任务:消费的订单OrderId为OID00000010
1525087160022ms:redis消费了一个任务:消费的订单OrderId为OID00000011
1525087160023ms:redis消费了一个任务:消费的订单OrderId为OID00000011
1525087160029ms:redis消费了一个任务:消费的订单OrderId为OID00000011
1525087160038ms:redis消费了一个任务:消费的订单OrderId为OID00000012
1525087160045ms:redis消费了一个任务:消费的订单OrderId为OID00000012
1525087160048ms:redis消费了一个任务:消费的订单OrderId为OID00000012
1525087160053ms:redis消费了一个任务:消费的订单OrderId为OID00000013
1525087160064ms:redis消费了一个任务:消费的订单OrderId为OID00000013
1525087160065ms:redis消费了一个任务:消费的订单OrderId为OID00000014
1525087160069ms:redis消费了一个任务:消费的订单OrderId为OID00000014
当前没有等待的任务
当前没有等待的任务
当前没有等待的任务
当前没有等待的任务

显然,出现了多个线程消费同一个资源的情况。

解决方案

  • 用分布式锁,但是用分布式锁,性能下降了,该方案不细说。
  • 对ZREM的返回值进行判断,只有大于0的时候,才消费数据,于是将consumerDelayMessage()方法里的
if(nowSecond >= score){
    String orderId = ((Tuple)items.toArray()[0]).getElement();
    jedis.zrem("OrderId", orderId);
    System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);
}

修改为

if(nowSecond >= score){
    String orderId = ((Tuple)items.toArray()[0]).getElement();
    Long num = jedis.zrem("OrderId", orderId);
    if( num != null && num>0){
        System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);
    }
}

在这种修改后,重新运行ThreadTest类,发现输出正常了

思路二

该方案使用redis的Keyspace Notifications,中文翻译就是键空间机制,就是利用该机制可以在key失效之后,提供一个回调,实际上是redis会给客户端发送一个消息。是需要redis版本2.8以上。

实现二

在redis.conf中,加入一条配置

notify-keyspace-events Ex

运行代码如下

package com.rjzheng.delay5;

import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPubSub;

public class RedisTest {
    private static final String ADDR = "127.0.0.1";
    private static final int PORT = 6379;
    private static JedisPool jedis = new JedisPool(ADDR, PORT);
    private static RedisSub sub = new RedisSub();

    public static void init() {
        new Thread(new Runnable() {
            public void run() {
                jedis.getResource().subscribe(sub, "__keyevent@0__:expired");
            }
        }).start();
    }

    public static void main(String[] args) throws InterruptedException {
        init();
        for(int i =0;i<10;i++){
            String orderId = "OID000000"+i;
            jedis.getResource().setex(orderId, 3, orderId);
            System.out.println(System.currentTimeMillis()+"ms:"+orderId+"订单生成");
        }
    }

    static class RedisSub extends JedisPubSub {
        @Override
        public void onMessage(String channel, String message) {
            System.out.println(System.currentTimeMillis()+"ms:"+message+"订单取消");
        }
    }
}

输出如下

1525096202813ms:OID0000000订单生成
1525096202818ms:OID0000001订单生成
1525096202824ms:OID0000002订单生成
1525096202826ms:OID0000003订单生成
1525096202830ms:OID0000004订单生成
1525096202834ms:OID0000005订单生成
1525096202839ms:OID0000006订单生成
1525096205819ms:OID0000000订单取消
1525096205920ms:OID0000005订单取消
1525096205920ms:OID0000004订单取消
1525096205920ms:OID0000001订单取消
1525096205920ms:OID0000003订单取消
1525096205920ms:OID0000006订单取消
1525096205920ms:OID0000002订单取消

可以明显看到3秒过后,订单取消了

优缺点

优点:

  1. 由于使用Redis作为消息通道,消息都存储在Redis中。如果发送程序或者任务处理程序挂了,重启之后,还有重新处理数据的可能性。
  2. 做集群扩展相当方便
  3. 时间准确度高

缺点:

  1. 需要额外进行redis维护

(5)使用消息队列

我们可以采用rabbitMQ的延时队列。RabbitMQ具有以下两个特性,可以实现延迟队列

  • RabbitMQ可以针对Queue和Message设置 x-message-tt,来控制消息的生存时间,如果超时,则消息变为dead letter
  • lRabbitMQ的Queue可以配置x-dead-letter-exchange 和x-dead-letter-routing-key(可选)两个参数,用来控制队列内出现了deadletter,则按照这两个参数重新路由。
    结合以上两个特性,就可以模拟出延迟消息的功能,具体的,我改天再写一篇文章,这里再讲下去,篇幅太长。

优缺点

优点: 高效,可以利用rabbitmq的分布式特性轻易地进行横向扩展,消息支持持久化增加了可靠性。
缺点:本身的易用度要依赖于rabbitMq的运维.因为要引用rabbitMq,所以复杂度和成本变高

最后

觉得不错的小伙伴记得转发关注哦,后续会持续更新精选技术文章!

相关推荐

如何高效实现API接口的自动化测试?

实现API接口的自动化测试是一个多步骤的过程,涉及需求分析、测试用例设计、环境搭建、脚本编写、执行测试、结果分析和持续集成等多个环节。选择合适的工具和框架也是成功的关键。嘿,咱来聊聊实现API接口自动...

总结100+前端优质库,让你成为前端百事通

1年多时间,陆陆续续整理了一些常用且实用的开源项目,方便大家更高效地学习和工作.js相关库js常用工具类「lodash」一个一致性、模块化、高性能的JavaScript实用工具库。「xij...

混合开发到底怎么个混法?(混合开发rn)

引言最近几年混合开发越来越火,从PhoneGap到Cordova到Ionic,再到ReactNative,到Flutter。同时在搜索引擎中诸如IonicVSReactNativeRN和Weex+...

无所不能,将 Vue 渲染到嵌入式液晶屏

该文章转载自公众号@前端时刻,https://mp.weixin.qq.com/s/WDHW36zhfNFVFVv4jO2vrA前言之前看了雪碧大佬的将React渲染到嵌入式液晶屏觉得很有意思,R...

【直接收藏】前端 VUE 高阶面试题(一)

说说vue动态权限绑定渲染列表(权限列表渲染)首先请求服务器,获取当前用户的权限数据,比如请求this.$http.get("rights/list");获取到权限数据之后,在列表中...

Vue采用虚拟DOM的目的是什么?(vue2 虚拟dom)

虚拟DOM更新其实效率并不像大家想象中的那么高,而且React官方也从来没说过虚拟DOM效率有多高,相反React虚拟DOM的实现也不是所有虚拟DOM产品中最好的。但是通过虚拟D...

什么是 JavaScript?(什么是党的旗帜)

本文首发自「慕课网」,想了解更多IT干货内容,程序员圈内热闻,欢迎关注!作者|慕课网精英讲师然冬JavaScript(JS)是一种具有函数优先的轻量级,解释型或即时编译型的编程语言。(MDN...

Weex在内涵发现页中的工程实践(weex唯客交易所官网)

React-Native和Weex是目前最为火热的两个客户端跨平台解决方案。从去年2016年9月份开始,IES在抖音产品中应用了ReactNative,中途遇到了很多的问题,尤其是长列表的性能问题一...

新恒汇:公司主要业务包括智能卡业务、蚀刻引线框架业务以及物联网eSIM芯片封测业务

证券日报网讯新恒汇7月3日在互动平台回答投资者提问时表示,公司主要业务包括智能卡业务、蚀刻引线框架业务以及物联网eSIM芯片封测业务。具体请关注公司公告和公开披露信息。(编辑王雪儿)...

“移”科普——什么是物联网?(移动设备物联网物联网应用实例)

物联网(InternetofThings,简称IoT)是指通过互联网将物理世界与数字世界相连接,实现物与物之间的智能互联的网络。它是一种新型的信息通信技术,通过传感器、嵌入式系统、网络技术等手段,...

如何自己搭建一个物联网平台?(自建物联网云平台)

自己搭建一个物联网(IoT)平台需要涉及多个关键步骤,包括硬件设备的选择、软件开发、网络通信、安全性设计以及数据管理。以下是搭建物联网平台的基本流程:1.确定物联网平台架构一个完整的物联网平台通常包...

物联网数据接入篇-应用层 Modbus(5)

前四篇文章讲述的是TCP/IP模型中的网络接口层、网络层、传输层、应用层一,这里到了第四层应用层二。由于协议比较多,就分开篇来介绍。这篇讲Modbus协议,后面再讲MQTT协议、CoAP协议、...

乐鑫ESP32-C5全面量产:行业首款双频Wi-Fi 6的RISC-V SoC

IT之家5月2日消息,乐鑫信息科技4月30日宣布,ESP32-C5现已全面进入量产。ESP32-C5宣称是行业首款2.4&5GHz双频Wi-Fi6的RISC-...

Vue Shop Admin:强大而易用的后台管理系统模板

VueShopAdmin是一个基于Vue.js框架的后台管理系统模板。它具有简洁、易用和美观的特点,非常适合开发人员用于快速构建各种类型的管理系统。这个模板使用了最新的技术,如Vue3、V...

基于Prometheus的自动化巡检(prometheus自动发现详解)

!!大家好,我是乔克,一个爱折腾的运维工程,一个睡觉都被自己丑醒的云原生爱好者。作者:乔克公众号:运维开发故事道路千万条,安全第一条。操作不规范,运维两行泪。前言目前,大部分公司都采用Promet...

取消回复欢迎 发表评论: