百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

端智能系列文章|端侧复杂事件实时处理框架

ccwgpt 2024-10-26 08:43 27 浏览 0 评论

背景

现在移动网络越来越发达,移动生活越来越丰富,在用户手机上可能同时存在数百种APP,这注定了用户使用某一款APP的时间也将逐渐缩短。如果用户在APP内仅浏览了几分钟甚至几十秒,那我们将很难为用户提供更有价值的服务与信息,大部分应用的做法是将最最热销的产品或最最火爆的活动放在应用的闪屏或是首焦上,对于闲鱼这样具有丰富业务生态的应用来说,显然还不够。

那如何在用户驻留的短暂时间内为用户提供更有价值的信息呢,闲鱼基于用户的访问路径,为用户提供了更加丰富的优质信息与服务。例如用户发布了商品,我们会推荐当前正在进行的包邮活动,用户没买到想要的商品,我们会及时给用户推荐同款。

为了实现这样的信息提供模式,闲鱼打造了一套流量调控系统。

是什么

流量调控系统分为云侧事件处理和端侧事件处理,云侧事件处理能中心化的处理所有能收集的事件,但由于处理量非常之大,在处理速度和资源消耗上有不小的压力,而今天要介绍的,负责端侧事件实时处理的框架,端侧框架仅运行在单个手机APP上,能替云侧分担资源的压力,同时实时效率上进一步的提升。

闲鱼实时流量调控系统的端侧版本是一个合作项目,我们称之为BehaviR,BehaviR框架在纵向流程上,涵盖了用户行为的实时处理,高质量的数据供给,强实时的数据传输,实时计算,决策与用户触达,在广度上能支撑用户在应用内的全场景,同时对典型场景会有定制的支持。而本篇介绍的实时处理框架即是其中的一部分,负责实时计算的闭环,让我们看下BehaviR全貌:

为了完成实时计算的闭环,实时处理框架需要具备的能力:

在实时处理框架中,负责规则计算的部分即是端侧计算引擎,同云侧计算引擎一样,端侧计算引擎的目的是也将获取到的无终结状态的数据进行有状态的实时流式计算。但由于计算发生在端侧,在一个输入源相对有限、运算资源相对有限、有版本限制的运算环境下,要完成上述目的,它需要解决以下几个问题:

  1. 如何在端侧保证无终结状态的数据持续供给
  2. 如何在端侧进行有状态的实时计算
  3. 如何将实时计算结果进行有效输出

数据

在端侧,数据的供给流程如图:

数据的供给能力由BehaviR的数据模块完成,业务方在APP内集成BehaviR,然后将页面操作数据、网络请求数据、存储操作数据等有序灌给BehaviR,BehaviR会根据计算配置将待计算数据按需进行持久化和供给。

例如端上指定如下配置:

{
      "actionTypeIn":[
        "leave"
      ],
      "sceneIn":[
        "https://market.m.taobao.com/app/idleFish-F2e/idlefish-renting/home",
        "https://market.wapa.taobao.com/app/idleFish-F2e/idlefish-renting/home"
      ],
      "taskArray":[
        {
          "taskType":"py_backtrace",
          "pythonName":"test_cep_rent_rule2",
          "filter":[
            {
              "alias":"e1",
              "actionType":"leave"
            },
            {
              "alias":"e2",
              "actionType":"pv"
            }
          ]
        }
      ]
    }

我们会在"actionType"内配置触发器,即BehaviR将会在"actionType"为"leave"的事件发生时,将拥有的数据提供给计算引擎。在计算发生前,计算所需要的数据类型是可预期的,因此BehaviR会根据"filter"内的配置,将数据过滤后传输给计算引擎。

在APP中运行计算任务前,每一个计算任务都将拥有一份这样属于自己的配置,来指定需要的计算数据类型。在BehaviR中根据端侧所有计算任务的数据需求,可以择优进行持久化来尽可能少的占用磁盘空间和内存空间。

计算

云侧实时计算能力已经成为了业界先驱,Flink、Siddhi、Spark等如数家珍,而端侧并没有计算框架先例,那我们在端侧需要做的,就是深入了解云侧引擎,然后针对端侧环境进行轻量化和定制化。结合我们已承接业务的经验,将计算框架从功能层面划分如下,并与云侧进行比较。

实时计算的窗口,可以对数据进行一定的预处理,例如按时间间隔每N秒处理一次,按数量每N个事件处理一次等。而在端上由于每个行为都有典型的特征,而大多数场景都对这些特征有着明确的预期,因此端上以Trigger的方式进行事件的处理,在Trigger上会描述我们需要开始计算的事件具有的属性,当事件属性与Trigger的属性匹配时,即开始计算。

(不确定有限)状态机和共享缓冲区是计算处理的核心,其中共享缓冲区是对状态计算中状态与事件对应关系的存储优化,我们在初版上也实现了其必要的组成部分。

在并发计划和事件时序控制上,端上暂时通过单端事件的有序录入,来保障绝大多数事件的时序,而并发的优化并不是初版的瓶颈所在,于是我们直接放弃了并发控制,在单线程上进行计算。

简而言之,我们去掉了多流处理的设计,在容错机制上弱化处理,但保留了核心的计算能力,同时将实时流处理上的概念进行融合,更加贴近我们的应用场景。关于计算部分的具体实现,后续将提供更详细的介绍。

实现方案选型

当框架的概念与功能确定后,我们需要考虑使用什么样的方式去实现。于是将预备的实现方案从动态性、执行效率、开发效率等方面进行了比较:

由于在整个端侧处理框架研发上,我们是首次尝试落地,期望能快速验证可行性,因此项目上线及运行过程会具备很高的不确定性及稳定性风险。综上几个因素,恰逢集团能拥有高效、稳定的Python运行时框架Walle,因而我们选择在Python运行时框架下Walle,使用Python进行研发。

描述及编译

在开始运算前,我们会有一套基于Python的应用编程接口来描述计算逻辑,当使用该接口编写完成后,会在运行时编译并构建计算图实例,然后进行计算。
该编程接口的表达以“访问详情然后离开”为例,我们可以描述为:

Pattern('e1') \
  .where(KVCondition('actionType', 'pv')) \
  .and(KVCondition('scene', 'item_detail')) \
  .followby('e2') \
  .where(KVCondition('actionType', 'leave')) \
  .and(KVCondition('scene', 'item_detail'))

为了云与端的体验一致性,我们也将支持从调控系统的标准DSL(该DSL已成为Blink支持的标准)到Python描述的转换,上述代码用DSL来描述,即:

EVENT: e1->e2
WHERE e1.extra_info.actionType = 'pv' 
AND e1.extra_info.scene = 'item_detail' 
AND e2.extra_info.actionType = 'leave'
AND e2.extra_info.scene = 'item_detail' 

输出

当计算完成后,我们会将计算结果进行输出,在端侧的输出主要分为三个方面,一是业务权益触达,二是算法模型输入,三是另一次计算输入。

由于在业务权益触达形式上,不同的应用有着自己的展现形式和实现方式,因此我们仅保留公用的通讯协议来将计算结果进行格式化输出。在闲鱼端内,我们会介入协议的响应方,并接入闲鱼的决策分发模块进行统一管控。决策分发模块将对单次策略的触达效果进行管控,同时对同一用户的所有策略进行调控。在闲鱼应用内已经注入了丰富的触达形式供决策模块选择。

端侧的算法模型运行时,经常需要特定的行为作为模型运行的触发器,那么当计算结果作为算法模型输入时,由于在集团内端侧算法模型有统一的运行平台,因而我们需要将计算输出与统一的模型运行框架对接,支持特定的计算结果自动唤醒对应模型的运行,然后将计算结果经过有选择性的筛选后输出给算法模型。

如果需要通过多个计算策略串联计算后产出结果,那我们会提前约定好计算串联前的数据规范,当另一次计算处理需要以当前计算结果作为输入时,我们会在本次计算结果模拟为一次约定的特殊类型的行为数据并流入数据模块,然后在另一次计算配置上添加该类型数据的监听,即可顺利执行。

流程回顾

当我们了解了端侧复杂事件实时处理框架的各个部分后,可以用下图再回顾下整个运行过程:
我们会在应用启动的时候去同步本次启动需要进行的计算任务配置,同时数据模块会开始实时处理数据,当处理的数据与任务配置相匹配时,即开始给计算框架供给数据,然后进行实时计算。计算完成后,会流转决策分发模块,由决策模块决定计算结果的输出方向,如果决策为触达用户,则会采用相关的触达配置与形式进行触达。

展望

我们目前在闲鱼APP线上稳定运行了该实时处理框架的首个版本,云侧需要处理5秒左右,而现在全部流程可在毫秒级内完成,对服务器资源零消耗。但在计算细节上,我们仍然有很多需要打磨的地方,例如端上进程退出带来的计算终断问题, 少量事件乱序问题,需要能承接更多复杂场景的聚合计算等。由此,我们将为了更高效的计算和更稳定的服务而努力。更加详情的计算细节介绍,尽请期待!

作者:兴往

本文为阿里云原创内容,未经允许不得转载。

相关推荐

详解DNFSB2毒王的各种改动以及大概的加点框架

首先附上改动部分,然后逐项分析第一个,毒攻掌握技能意思是力量智力差距超过15%的话差距会被强行缩小到15%,差距不到15%则无效。举例:2000力量,1650智力,2000*0.85=1700,则智力...

通篇干货!纵观 PolarDB-X 并行计算框架

作者:玄弟七锋PolarDB-X面向HTAP的混合执行器一文详细说明了PolarDB-X执行器设计的初衷,其初衷一直是致力于为PolarDB-X注入并行计算的能力,兼顾TP和AP场景,逐渐...

字节新推理模型逆袭DeepSeek,200B参数战胜671B,豆包史诗级加强

梦晨发自凹非寺量子位|公众号QbitAI字节最新深度思考模型,在数学、代码等多项推理任务中超过DeepSeek-R1了?而且参数规模更小。同样是MoE架构,字节新模型Seed-Thinkin...

阿里智能化研发起飞!RTP-LLM 实现 Cursor AI 1000 token/s 推理技术揭秘

作者|赵骁勇阿里巴巴智能引擎事业部审校|刘侃,KittyRTP-LLM是阿里巴巴大模型预测团队开发的高性能LLM推理加速引擎。它在阿里巴巴集团内广泛应用,支撑着淘宝、天猫、高德、饿...

多功能高校校园小程序/校园生活娱乐社交管理小程序/校园系统源码

校园系统通常是为学校、学生和教职工提供便捷的数字化管理工具。综合性社交大学校园小程序源码:同城校园小程序-大学校园圈子创业分享,校园趣事,同校跑腿交友综合性论坛。小程序系统基于TP6+Uni-app...

婚恋交友系统nuiAPP前端解决上传视频模糊的问题

婚恋交友系统-打造您的专属婚恋交友平台系统基于TP6+Uni-app框架开发;客户移动端采用uni-app开发,管理后台TH6开发支持微信公众号端、微信小程序端、H5端、PC端多端账号同步,可快速打包...

已节省数百万GPU小时!字节再砍MoE训练成本,核心代码全开源

COMET团队投稿量子位|公众号QbitAI字节对MoE模型训练成本再砍一刀,成本可节省40%!刚刚,豆包大模型团队在GitHub上开源了叫做COMET的MoE优化技术。COMET已应用于字节...

通用电气完成XA102发动机详细设计审查 将为第六代战斗机提供动力

2025年2月19日,美国通用电气航空航天公司(隶属于通用电气公司)宣布,已经完成了“下一代自适应推进系统”(NGAP)计划下提供的XA102自适应变循环发动机的详细设计审查阶段。XA102是通用电气...

tpxm-19双相钢材质(双相钢f60材质)

TPXM-19双相钢是一种特殊的钢材,其独特的化学成分、机械性能以及广泛的应用场景使其在各行业中占有独特的地位。以下是对TPXM-19双相钢的详细介绍。**化学成分**TPXM-19双相钢的主要化学成...

thinkphp6里怎么给layui数据表格输送数据接口

layui官网已经下架了,但是产品还是可以使用。今天一个朋友问我怎么给layui数据表格发送数据接口,当然他是学前端的,后端不怎么懂,自学了tp框架问我怎么调用。其实官方文档上就有相应的数据格式,js...

完美可用的全媒体广告精准营销服务平台PHP源码

今天测试了一套php开发的企业网站展示平台,还是非常不错的,下面来给大家说一下这套系统。1、系统架构这是一套基于ThinkPHP框架开发的HTML5响应式全媒体广告精准营销服务平台PHP源码。现在基于...

一对一源码开发,九大方面完善基础架构

以往的直播大多数都是一对多进行直播社交,弊端在于不能满足到每个用户的需求,会降低软件的体验感。伴随着用户需求量的增加,一对一直播源码开始出现。一个完整的一对一直播流程即主播发起直播→观看进入房间观看→...

Int J Biol Macromol .|交联酶聚集体在分级共价有机骨架上的固定化:用于卤代醇不对称合成的高稳定酶纳米反应器

大家好,今天推送的文章发表在InternationalJournalofBiologicalMacromolecules上的“Immobilizationofcross-linkeden...

【推荐】一款开源免费的 ChatGPT 聊天管理系统,支持PC、H5等多端

如果您对源码&技术感兴趣,请点赞+收藏+转发+关注,大家的支持是我分享最大的动力!!!项目介绍GPTCMS是一款开源且免费(基于GPL-3.0协议开源)的ChatGPT聊天管理系统,它基于先进的GPT...

高性能计算(HPC)分布式训练:训练框架、混合精度、计算图优化

在深度学习模型愈发庞大的今天,分布式训练、高效计算和资源优化已成为AI开发者的必修课。本文将从数据并行vs模型并行、主流训练框架(如PyTorchDDP、DeepSpeed)、混合精度训练(...

取消回复欢迎 发表评论: