大数据实时计算流程介绍(大数据四种计算方式)
ccwgpt 2024-10-26 08:43 30 浏览 0 评论
实时计算是常见的大数据计算场景。业务部门需要实时反馈产品的被点击、浏览、收藏、购买、评价等数据,对时延的要求一般是秒级,甚至毫秒级。而批处理计算引擎一般需要几分钟或者几小时才能返回结果,显然无法满足该场景的计算需求。基于实时计算的需求,流式计算引擎应运而生。目前,应用得较多的流式计算引擎主要有Spark、Storm和Flink。
典型的实时计算流程如下图所示,首先通过Flume实时采集数据,然后通过消息队列对采集的数据进行缓存,之后应用流式计算引擎实施计算,最后将计算的结果存储在高速的查询引擎中,以便后续高效地使用这些数据支持报表开发、多维分析或者数据挖掘等。
一、实时计算和离线计算如何高效共存
部分企业对实时计算和离线计算共存的需求十分迫切。大部分的报表和任务还是以离线计算为主,对实时要求较高的应用需要使用实时计算引擎。
最直观的想法是分别为离线计算和实时计算场景搭建计算平台,让两套平台共存。这就是常说的Lambda架构的处理方式,如下图(1)所示。
一个企业如果维护两套独立的计算平台,那么成本较高,运维难度大,且两个平台的数据准确性和一致性难以保障。如何高效地解决两套计算引擎共存的问题
Kappa 流批一体化架构和处理方式能有效地解决两者高效共存的问题,其架构示意图如上图(2)所示。Kappa架构的核心组件是消息队列、数据仓库、流批一体化计算引擎和高效的查询引擎。目前,最流行的流批一体化计算引擎是Flink。
二、实时数据仓库
实时数据仓库与离线数据仓库最大的区别是通过使用消息队列、流批一体化计算引擎、查询引擎等工具让整个平台的计算和查询效率更高,以满足业务的实时需求。因此,实时数据仓库对计算能力要求更高。如果数据量短期陡然增加,那么要考虑实时数据仓库的性能和稳定性问题。相比之下,离线数据仓库对数据量的增加不太敏感,性能更加稳定。另外,从分层建模的角度来看,实时数据仓库的层级不宜太多,否则会增加响应的延时。下图是基于流批一体化计算引擎 Flink 的实时数据仓库的分层框架和技术选型。
1.ODS层
从数据源中抽取贴源数据并将其存储在Kafka中,构成了实时数据仓库的ODS层。
2.DWD层
通过实时订阅Kafka中的流式业务数据,利用Flink计算引擎进行ETL、清洗、聚合、多表关联等操作,得到实时的明细数据,并将其存储在Kafka中。
3.DWS层
通过Flink计算引擎对DWD层的明细数据进行聚合和汇总操作,得到DWS层。基于业务差异化的需求,DWS层分为轻度汇总层和高度汇总层。轻度汇总层的主要用途是支持APP层的应用需求。高度汇总层的主要用途是满足业务对统计数据的高效查询需求,如实时大屏、数据产品等。
4.APP层
基于业务的差异化需求,轻度汇总层会采用不同的存储介质。比如,OLAP需求一般存储在ClickHouse或者Kylin中。查询需求一般存储在Elasticsearch、HBase或MongoDB中。高度汇总层的数据量一般较小,为了满足高效的查询需求,数据一般存储在高速查询的介质中,如MySQL 和HBase中。如果数据量更小,那么数据可以存储在内存数据库Redis 中,以便进一步提高查询效率。
APP 层是数据应用层,基于下面各层的数据开发各种应用,如BI、多维分析、及时查询、数据检索、定价、反欺诈等。
5.DIM 层
DIM 层的主要存储引擎是MySQL、Redis和HBase。在数据量比较小的情况下,可以使用内存数据库,效率更高。HBase能有效地支持添加(Append) 操作, 查询结果以秒级别返回。对于维度多变的场景, 可以有限地使用HBase存储。
相关推荐
- 十分钟让你学会LNMP架构负载均衡(impala负载均衡)
-
业务架构、应用架构、数据架构和技术架构一、几个基本概念1、pv值pv值(pageviews):页面的浏览量概念:一个网站的所有页面,在一天内,被浏览的总次数。(大型网站通常是上千万的级别)2、u...
- AGV仓储机器人调度系统架构(agv物流机器人)
-
系统架构层次划分采用分层模块化设计,分为以下五层:1.1用户接口层功能:提供人机交互界面(Web/桌面端),支持任务下发、实时监控、数据可视化和报警管理。模块:任务管理面板:接收订单(如拣货、...
- 远程热部署在美团的落地实践(远程热点是什么意思)
-
Sonic是美团内部研发设计的一款用于热部署的IDEA插件,本文其实现原理及落地的一些技术细节。在阅读本文之前,建议大家先熟悉一下Spring源码、SpringMVC源码、SpringBoot...
- springboot搭建xxl-job(分布式任务调度系统)
-
一、部署xxl-job服务端下载xxl-job源码:https://gitee.com/xuxueli0323/xxl-job二、导入项目、创建xxl_job数据库、修改配置文件为自己的数据库三、启动...
- 大模型:使用vLLM和Ray分布式部署推理应用
-
一、vLLM:面向大模型的高效推理框架1.核心特点专为推理优化:专注于大模型(如GPT-3、LLaMA)的高吞吐量、低延迟推理。关键技术:PagedAttention:类似操作系统内存分页管理,将K...
- 国产开源之光【分布式工作流调度系统】:DolphinScheduler
-
DolphinScheduler是一个开源的分布式工作流调度系统,旨在帮助用户以可靠、高效和可扩展的方式管理和调度大规模的数据处理工作流。它支持以图形化方式定义和管理工作流,提供了丰富的调度功能和监控...
- 简单可靠高效的分布式任务队列系统
-
#记录我的2024#大家好,又见面了,我是GitHub精选君!背景介绍在系统访问量逐渐增大,高并发、分布式系统成为了企业技术架构升级的必由之路。在这样的背景下,异步任务队列扮演着至关重要的角色,...
- 虚拟服务器之间如何分布式运行?(虚拟服务器部署)
-
在云计算和虚拟化技术快速发展的今天,传统“单机单任务”的服务器架构早已难以满足现代业务对高并发、高可用、弹性伸缩和容错容灾的严苛要求。分布式系统应运而生,并成为支撑各类互联网平台、企业信息系统和A...
- 一文掌握 XXL-Job 的 6 大核心组件
-
XXL-Job是一个分布式任务调度平台,其核心组件主要包括以下部分,各组件相互协作实现高效的任务调度与管理:1.调度注册中心(RegistryCenter)作用:负责管理调度器(Schedule...
- 京东大佬问我,SpringBoot中如何做延迟队列?单机与分布式如何做?
-
京东大佬问我,SpringBoot中如何做延迟队列?单机如何做?分布式如何做呢?并给出案例与代码分析。嗯,用户问的是在SpringBoot中如何实现延迟队列,单机和分布式环境下分别怎么做。这个问题其实...
- 企业级项目组件选型(一)分布式任务调度平台
-
官网地址:https://www.xuxueli.com/xxl-job/能力介绍架构图安全性为提升系统安全性,调度中心和执行器进行安全性校验,双方AccessToken匹配才允许通讯;调度中心和执...
- python多进程的分布式任务调度应用场景及示例
-
多进程的分布式任务调度可以应用于以下场景:分布式爬虫:importmultiprocessingimportrequestsdefcrawl(url):response=re...
- SpringBoot整合ElasticJob实现分布式任务调度
-
介绍ElasticJob是面向互联网生态和海量任务的分布式调度解决方案,由两个相互独立的子项目ElasticJob-Lite和ElasticJob-Cloud组成。它通过弹性调度、资源管控、...
- 分布式可视化 DAG 任务调度系统 Taier 的整体流程分析
-
Taier作为袋鼠云的开源项目之一,是一个分布式可视化的DAG任务调度系统。旨在降低ETL开发成本,提高大数据平台稳定性,让大数据开发人员可以在Taier直接进行业务逻辑的开发,而不用关...
- SpringBoot任务调度:@Scheduled与TaskExecutor全面解析
-
一、任务调度基础概念1.1什么是任务调度任务调度是指按照预定的时间计划或特定条件自动执行任务的过程。在现代应用开发中,任务调度扮演着至关重要的角色,它使得开发者能够自动化处理周期性任务、定时任务和异...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- MVC框架 (46)
- spring框架 (46)
- 框架图 (58)
- flask框架 (53)
- quartz框架 (51)
- abp框架 (47)
- jpa框架 (47)
- laravel框架 (46)
- springmvc框架 (49)
- 分布式事务框架 (65)
- scrapy框架 (56)
- shiro框架 (61)
- 定时任务框架 (56)
- java日志框架 (61)
- JAVA集合框架 (47)
- grpc框架 (55)
- ppt框架 (48)
- 内联框架 (52)
- winform框架 (46)
- gui框架 (44)
- cad怎么画框架 (58)
- ps怎么画框架 (47)
- ssm框架实现登录注册 (49)
- oracle字符串长度 (48)
- oracle提交事务 (47)