百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

5 分钟认识 Python 的 ORM 框架-SQLAlchemy

ccwgpt 2024-09-17 12:27 24 浏览 0 评论

SQLAlchemy是一个流行的Python ORM框架,它提供了一种简单的方式来管理数据库。在本文中,我们将深入探讨SQLAlchemy的各个方面,包括安装、配置、模型定义、查询和关系等。我们还将介绍一些常用的SQLAlchemy扩展,以及如何使用它们来增强您的数据库管理。

一、安装和配置

在开始使用SQLAlchemy之前,您需要安装Python和SQLAlchemy。您可以从Python官方网站(https://www.python.org/downloads/)下载Python,然后使用以下命令安装SQLAlchemy:

pip install sqlalchemy

安装完成后,您可以使用以下代码测试SQLAlchemy是否安装成功:

from sqlalchemy import create_engine

engine = create_engine('sqlite:///example.db')
connection = engine.connect()
result = connection.execute('SELECT 1')
print(result.fetchone())

运行该代码后,您将在控制台中看到“(1,)”的输出。这表明您已成功安装和配置SQLAlchemy。

二、模型定义

在SQLAlchemy中,模型是指用于表示数据库表的类。每个模型类都必须继承自“Base”类,并定义一个名为“tablename”的属性,该属性指定模型类对应的数据库表的名称。

例如,如果您的应用程序有一个名为“users”的数据库表,那么您可以编写一个名为“User”的模型类:

from sqlalchemy import Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class User(Base):
    __tablename__ = 'users'

    id = Column(Integer, primary_key=True)
    name = Column(String(50), nullable=False)
    email = Column(String(50), nullable=False)

在上面的代码中,我们定义了一个名为“User”的模型类,它具有一个名为“id”的整数主键、一个名为“name”的字符串和一个名为“email”的字符串。

三、查询

在SQLAlchemy中,查询是指用于从数据库中检索数据的操作。您可以使用SQLAlchemy的查询API来执行各种类型的查询,例如简单查询、过滤查询、聚合查询和连表查询等。

以下是一些常用的查询示例:

  1. 简单查询

要执行简单查询,您可以使用以下代码:

from sqlalchemy.orm import sessionmaker

Session = sessionmaker(bind=engine)
session = Session()

users = session.query(User).all()
for user in users:
    print(user.name, user.email)

在上面的代码中,我们使用SQLAlchemy的“session”对象来执行查询。我们查询所有用户并将它们打印到控制台。

  1. 过滤查询

要执行过滤查询,您可以使用以下代码:

from sqlalchemy.orm import sessionmaker

Session = sessionmaker(bind=engine)
session = Session()

users = session.query(User).filter_by(name='John').all()
for user in users:
    print(user.name, user.email)

在上面的代码中,我们使用SQLAlchemy的“filter_by”方法来过滤用户。我们只查询名为“John”的用户并将它们打印到控制台。

  1. 聚合查询

要执行聚合查询,您可以使用以下代码:

from sqlalchemy.orm import sessionmaker
from sqlalchemy import func

Session = sessionmaker(bind=engine)
session = Session()

count = session.query(func.count(User.id)).scalar()
print(count)

在上面的代码中,我们使用SQLAlchemy的“func”模块来执行聚合查询。我们查询用户的数量并将其打印到控制台。

  1. 连表查询

要执行连表查询,您可以使用以下代码:

from sqlalchemy.orm import sessionmaker
from sqlalchemy import join

Session = sessionmaker(bind=engine)
session = Session()

query = session.query(User, Address).join(Address)
for user, address in query:
    print(user.name, address.street, address.city, address.state)

在上面的代码中,我们使用SQLAlchemy的“join”方法来执行连表查询。我们查询所有用户和它们的地址,并将它们打印到控制台。

四、关系

在SQLAlchemy中,关系是指用于连接模型之间的关联的属性。您可以使用SQLAlchemy的关系API来定义各种类型的关系,例如一对多关系、多对多关系和自引用关系等。

以下是一些常用的关系示例:

  1. 一对多关系

要定义一对多关系,您可以使用以下代码:

from sqlalchemy.orm import relationship

class User(Base):
    __tablename__ = 'users'

    id = Column(Integer, primary_key=True)
    name = Column(String(50), nullable=False)
    email = Column(String(50), nullable=False)

    addresses = relationship('Address', back_populates='user')

class Address(Base):
    __tablename__ = 'addresses'

    id = Column(Integer, primary_key=True)
    street = Column(String(50), nullable=False)
    city = Column(String(50), nullable=False)
    state = Column(String(50), nullable=False)

    user_id = Column(Integer, ForeignKey('users.id'))
    user = relationship('User', back_populates='addresses')

在上面的代码中,我们定义了一个名为“User”的模型类和一个名为“Address”的模型类。我们使用“relationship”方法来定义用户和地址之间的一对多关系。

  1. 多对多关系

要定义多对多关系,您可以使用以下代码:

from sqlalchemy.orm import relationship

association_table = Table('association', Base.metadata,
    Column('user_id', Integer, ForeignKey('users.id')),
    Column('group_id', Integer, ForeignKey('groups.id'))
)

class User(Base):
    __tablename__ = 'users'

    id = Column(Integer, primary_key=True)
    name = Column(String(50), nullable=False)
    email = Column(String(50), nullable=False)

    groups = relationship('Group', secondary=association_table, back_populates='users')

class Group(Base):
    __tablename__ = 'groups'

    id = Column(Integer, primary_key=True)
    name = Column(String(50), nullable=False)

    users = relationship('User', secondary=association_table, back_populates='groups')

在上面的代码中,我们定义了一个名为“User”的模型类和一个名为“Group”的模型类。我们使用“relationship”方法和“association_table”表来定义用户和组之间的多对多关系。

五、常用扩展

在SQLAlchemy中,有许多有用的扩展可用于增强您的数据库管理。以下是一些常用的SQLAlchemy扩展:

  1. Flask-SQLAlchemy:用于在Flask应用程序中使用SQLAlchemy的扩展。
  2. Alembic:用于数据库迁移和版本控制的扩展。
  3. SQLAlchemy-Searchable:用于全文搜索的扩展。
  4. SQLAlchemy-Utils:用于提供常用的SQLAlchemy实用程序的扩展。
  5. SQLAlchemy-Continuum:用于历史记录和版本控制的扩展。

六、总结

SQLAlchemy是一个流行的Python ORM框架,它提供了一种简单的方式来管理数据库。在本文中,我们深入探讨了SQLAlchemy的各个方面,包括安装、配置、模型定义、查询和关系等。使用愉快!

相关推荐

迈向群体智能 | 智源发布首个跨本体具身大小脑协作框架

允中发自凹非寺量子位|公众号QbitAI3月29日,智源研究院在2025中关村论坛“未来人工智能先锋论坛”上发布首个跨本体具身大小脑协作框架RoboOS与开源具身大脑RoboBrain,可实...

大模型对接微信个人号,极空间部署AstrBot机器人,万事不求百度

「亲爱的粉丝朋友们好啊!今天熊猫又来介绍好玩有趣的Docker项目了,喜欢的记得点个关注哦!」引言前两天熊猫发过一篇关于如何在极空间部署AstrBot并对接QQ消息平台的文章,不过其实QQ现在已经很少...

Seata,让分布式事务不再是难题!实战分享带你领略Seata的魅力!

终身学习、乐于分享、共同成长!前言Seata是一款开源的分布式事务解决方案,致力于提供高性能和简单易用的分布式事务服务。Seata将为用户提供了AT、TCC、SAGA和XA事务模式,为用户打造一站式的...

常见分布式事务解决方案(分布式事务解决的问题)

1.两阶段提交(2PC)原理:分为准备阶段(协调者询问参与者是否可提交)和提交阶段(协调者根据参与者反馈决定提交或回滚)。优点:强一致性,适用于数据库层(如XA协议)。缺点:同步阻塞:所有参与者阻塞...

分布式事务:从崩溃到高可用,程序员必须掌握的实战方案!

“支付成功,但订单状态未更新!”、“库存扣减后,交易却回滚了!”——如果你在分布式系统中踩过这些“天坑”,这篇文章就是你的救命稻草!本文将手把手拆解分布式事务的核心痛点和6大主流解决方案,用代码实战+...

谈谈对分布式事务的一点理解和解决方案

分布式事务首先,做系统拆分的时候几乎都会遇到分布式事务的问题,一个仿真的案例如下:项目初期,由于用户体量不大,订单模块和钱包模块共库共应用(大war包时代),模块调用可以简化为本地事务操作,这样做只要...

一篇教你通过Seata解决分布式事务问题

1 Seata介绍Seata是由阿里中间件团队发起的开源分布式事务框架项目,依赖支持本地ACID事务的关系型数据库,可以高效并且对业务0侵入的方式解决微服务场景下面临的分布式事务问题,目前提供AT...

Seata分布式事务详解(原理流程及4种模式)

Seata分布式事务是SpringCloudAlibaba的核心组件,也是构建分布式的基石,下面我就全面来详解Seata@mikechen本篇已收于mikechen原创超30万字《阿里架构师进阶专题合...

分布式事务最终一致性解决方案有哪些?MQ、TCC、saga如何实现?

JTA方案适用于单体架构多数据源时实现分布式事务,但对于微服务间的分布式事务就无能为力了,我们需要使用其他的方案实现分布式事务。1、本地消息表本地消息表的核心思想是将分布式事务拆分成本地事务进行处理...

彻底掌握分布式事务2PC、3PC模型(分布式事务视频教程)

原文:https://mp.weixin.qq.com/s/_zhntxv07GEz9ktAKuj70Q作者:马龙台工作中使用最多的是本地事务,但是在对单一项目拆分为SOA、微服务之后,就会牵扯出分...

Seata分布式事务框架关于Annotation的SAGA模式分析

SAGAAnnotation是ApacheSeata版本2.3.0中引入的功能,它提供了一种使用Java注解而不是传统的JSON配置或编程API来实现SAGA事务模式的声明...

分布式事务,原理简单,写起来全是坑

今天我们就一起来看下另一种模式,XA模式!其实我觉得seata中的四种不同的分布式事务模式,学完AT、TCC以及XA就够了,Saga不好玩,而且长事务本身就有很多问题,也不推荐使用。S...

内存空间节约利器redis的bitmap(位图)应用场景有哪些你知道吗

在前面我们分享过一次Redis常用数据结构和使用场景,文章对Redis基本使用做了一个简单的API说明,但是对于其中String类型中的bitmap(位图)我们需要重点说明一下,因为他的作用真的不容忽...

分布式事务原理详解(图文全面总结)

分布式事务是非常核心的分布式系统,也是大厂经常考察对象,下面我就重点详解分布式事务及原理实现@mikechen本文作者:陈睿|mikechen文章来源:mikechen.cc分布式事务分布式事务指的是...

大家平时天天说的分布式系统到底是什么东西?

目录从单块系统说起团队越来越大,业务越来越复杂分布式出现:庞大系统分而治之分布式系统所带来的技术问题一句话总结:什么是分布式系统设计和开发经验补充说明:中间件系统及大数据系统前言现在有很多Java技术...

取消回复欢迎 发表评论: