百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

通过例子讲解Spring Batch入门,优秀的批处理框架

ccwgpt 2024-11-06 09:41 44 浏览 0 评论

1 前言

Spring Batch是一个轻量级的、完善的批处理框架,作为Spring体系中的一员,它拥有灵活、方便、生产可用的特点。在应对高效处理大量信息、定时处理大量数据等场景十分简便。

结合调度框架能更大地发挥Spring Batch的作用。

2 Spring Batch的概念知识

2.1 分层架构

Spring Batch的分层架构图如下:

可以看到它分为三层,分别是:

  • Application应用层:包含了所有任务batch jobs和开发人员自定义的代码,主要是根据项目需要开发的业务流程等。
  • Batch Core核心层:包含启动和管理任务的运行环境类,如JobLauncher等。
  • Batch Infrastructure基础层:上面两层是建立在基础层之上的,包含基础的读入reader和写出writer、重试框架等。

2.2 关键概念

理解下图所涉及的概念至关重要,不然很难进行后续开发和问题分析。

2.2.1 JobRepository

专门负责与数据库打交道,对整个批处理的新增、更新、执行进行记录。所以Spring Batch是需要依赖数据库来管理的。

2.2.2 任务启动器JobLauncher

负责启动任务Job。

2.2.3 任务Job

Job是封装整个批处理过程的单位,跑一个批处理任务,就是跑一个Job所定义的内容。

上图介绍了Job的一些相关概念:

  • Job:封装处理实体,定义过程逻辑。
  • JobInstance:Job的运行实例,不同的实例,参数不同,所以定义好一个Job后可以通过不同参数运行多次。
  • JobParameters:与JobInstance相关联的参数。
  • JobExecution:代表Job的一次实际执行,可能成功、可能失败。

所以,开发人员要做的事情,就是定义Job。

2.2.4 步骤Step

Step是对Job某个过程的封装,一个Job可以包含一个或多个Step,一步步的Step按特定逻辑执行,才代表Job执行完成。

通过定义Step来组装Job可以更灵活地实现复杂的业务逻辑。

2.2.5 输入——处理——输出

所以,定义一个Job关键是定义好一个或多个Step,然后把它们组装好即可。而定义Step有多种方法,但有一种常用的模型就是输入——处理——输出,即Item Reader、Item Processor和Item Writer。比如通过Item Reader从文件输入数据,然后通过Item Processor进行业务处理和数据转换,最后通过Item Writer写到数据库中去。

Spring Batch为我们提供了许多开箱即用的Reader和Writer,非常方便。

3 代码实例

理解了基本概念后,就直接通过代码来感受一下吧。整个项目的功能是从多个csv文件中读数据,处理后输出到一个csv文件。

3.1 基本框架

添加依赖:

<dependency>
  <groupId>org.springframework.boot</groupId>
  <artifactId>spring-boot-starter-batch</artifactId>
</dependency>
<dependency>
  <groupId>com.h2database</groupId>
  <artifactId>h2</artifactId>
  <scope>runtime</scope>
</dependency>

需要添加Spring Batch的依赖,同时使用H2作为内存数据库比较方便,实际生产肯定是要使用外部的数据库,如Oracle、PostgreSQL。

入口主类:

@SpringBootApplication
@EnableBatchProcessing
public class PkslowBatchJobMain {
    public static void main(String[] args) {
        SpringApplication.run(PkslowBatchJobMain.class, args);
    }
}

也很简单,只是在Springboot的基础上添加注解@EnableBatchProcessing。

领域实体类Employee:

package com.pkslow.batch.entity;
public class Employee {
    String id;
    String firstName;
    String lastName;
}

对应的csv文件内容如下:

id,firstName,lastName
1,Lokesh,Gupta
2,Amit,Mishra
3,Pankaj,Kumar
4,David,Miller

3.2 输入——处理——输出

3.2.1 读取ItemReader

因为有多个输入文件,所以定义如下:

@Value("input/inputData*.csv")
private Resource[] inputResources;

@Bean
public MultiResourceItemReader<Employee> multiResourceItemReader()
{
  MultiResourceItemReader<Employee> resourceItemReader = new MultiResourceItemReader<Employee>();
  resourceItemReader.setResources(inputResources);
  resourceItemReader.setDelegate(reader());
  return resourceItemReader;
}

@Bean
public FlatFileItemReader<Employee> reader()
{
  FlatFileItemReader<Employee> reader = new FlatFileItemReader<Employee>();
  //跳过csv文件第一行,为表头
  reader.setLinesToSkip(1);
  reader.setLineMapper(new DefaultLineMapper() {
    {
      setLineTokenizer(new DelimitedLineTokenizer() {
        {
          //字段名
          setNames(new String[] { "id", "firstName", "lastName" });
        }
      });
      setFieldSetMapper(new BeanWrapperFieldSetMapper<Employee>() {
        {
          //转换化后的目标类
          setTargetType(Employee.class);
        }
      });
    }
  });
  return reader;
}

这里使用了FlatFileItemReader,方便我们从文件读取数据。

3.2.2 处理ItemProcessor

为了简单演示,处理很简单,就是把最后一列转为大写:

public ItemProcessor<Employee, Employee> itemProcessor() {
  return employee -> {
    employee.setLastName(employee.getLastName().toUpperCase());
    return employee;
  };
}

3.2.3 输出ItremWriter

比较简单,代码及注释如下:

private Resource outputResource = new FileSystemResource("output/outputData.csv");

@Bean
public FlatFileItemWriter<Employee> writer()
{
  FlatFileItemWriter<Employee> writer = new FlatFileItemWriter<>();
  writer.setResource(outputResource);
  //是否为追加模式
  writer.setAppendAllowed(true);
  writer.setLineAggregator(new DelimitedLineAggregator<Employee>() {
    {
      //设置分割符
      setDelimiter(",");
      setFieldExtractor(new BeanWrapperFieldExtractor<Employee>() {
        {
          //设置字段
          setNames(new String[] { "id", "firstName", "lastName" });
        }
      });
    }
  });
  return writer;
}

3.3 Step

有了Reader-Processor-Writer后,就可以定义Step了:

@Bean
public Step csvStep() {
  return stepBuilderFactory.get("csvStep").<Employee, Employee>chunk(5)
    .reader(multiResourceItemReader())
    .processor(itemProcessor())
    .writer(writer())
    .build();
}

这里有一个chunk的设置,值为5,意思是5条记录后再提交输出,可以根据自己需求定义。

3.4 Job

完成了Step的编码,定义Job就容易了:

@Bean
public Job pkslowCsvJob() {
  return jobBuilderFactory
    .get("pkslowCsvJob")
    .incrementer(new RunIdIncrementer())
    .start(csvStep())
    .build();
}

3.5 运行

完成以上编码后,执行程序,结果如下:

成功读取数据,并将最后字段转为大写,并输出到outputData.csv文件。

4 监听Listener

可以通过Listener接口对特定事件进行监听,以实现更多业务功能。比如如果处理失败,就记录一条失败日志;处理完成,就通知下游拿数据等。

我们分别对Read、Process和Write事件进行监听,对应分别要实现ItemReadListener接口、ItemProcessListener接口和ItemWriteListener接口。因为代码比较简单,就是打印一下日志,这里只贴出ItemWriteListener的实现代码:

public class PkslowWriteListener implements ItemWriteListener<Employee> {
    private static final Log logger = LogFactory.getLog(PkslowWriteListener.class);
    @Override
    public void beforeWrite(List<? extends Employee> list) {
        logger.info("beforeWrite: " + list);
    }

    @Override
    public void afterWrite(List<? extends Employee> list) {
        logger.info("afterWrite: " + list);
    }

    @Override
    public void onWriteError(Exception e, List<? extends Employee> list) {
        logger.info("onWriteError: " + list);
    }
}

把实现的监听器listener整合到Step中去:

@Bean
public Step csvStep() {
  return stepBuilderFactory.get("csvStep").<Employee, Employee>chunk(5)
    .reader(multiResourceItemReader())
    .listener(new PkslowReadListener())
    .processor(itemProcessor())
    .listener(new PkslowProcessListener())
    .writer(writer())
    .listener(new PkslowWriteListener())
    .build();
}

执行后看一下日志:

这里就能明显看到之前设置的chunk的作用了。Writer每次是处理5条记录,如果一条输出一次,会对IO造成压力。

5 总结

Spring Batch还有许多优秀的特性,如面对大量数据时的并行处理。本文主要入门介绍为主,不一一介绍,后续会专门讲解。


多读书,多分享;多写作,多整理。

相关推荐

一个基于.Net Core遵循Clean Architecture原则开源架构

今天给大家推荐一个遵循CleanArchitecture原则开源架构。项目简介这是基于Asp.netCore6开发的,遵循CleanArchitecture原则,可以高效、快速地构建基于Ra...

AI写代码翻车无数次,我发现只要提前做好这3步,bug立减80%

写十万行全是bug之后终于找到方法了开发"提示词管理助手"新版本那会儿,我差点被bug整崩溃。刚开始两周,全靠AI改代码架构,结果十万行程序漏洞百出。本来以为AI说没问题就稳了,结果...

OneCode低代码平台的事件驱动设计:架构解析与实践

引言:低代码平台的事件驱动范式在现代软件开发中,事件驱动架构(EDA)已成为构建灵活、松耦合系统的核心范式。OneCode低代码平台通过创新性的注解驱动设计,将事件驱动理念深度融入平台架构,实现了业务...

国内大厂AI插件评测:根据UI图生成Vue前端代码

在IDEA中安装大厂的AI插件,打开ruoyi增强项目:yudao-ui-admin-vue31.CodeBuddy插件登录腾讯的CodeBuddy后,大模型选择deepseek-v3,输入提示语:...

AI+低代码技术揭秘(二):核心架构

本文档介绍了为VTJ低代码平台提供支持的基本架构组件,包括Engine编排层、Provider服务系统、数据模型和代码生成管道。有关UI组件库和widget系统的信息,请参阅UI...

GitDiagram用AI把代码库变成可视化架构图

这是一个名为gitdiagram的开源工具,可将GitHub仓库实时转换为交互式架构图,帮助开发者快速理解代码结构。核心功能一键可视化:替换GitHubURL中的"hub...

30天自制操作系统:第六天:代码架构整理与中断处理

1.拆开bootpack.c文件。根据设计模式将对应的功能封装成独立的文件。2.初始化pic:pic(可编程中断控制器):在设计上,cpu单独只能处理一个中断。而pic是将8个中断信号集合成一个中断...

AI写代码越帮越忙?2025年研究揭露惊人真相

近年来,AI工具如雨后春笋般涌现,许多人开始幻想程序员的未来就是“对着AI说几句话”,就能轻松写出完美的代码。然而,2025年的一项最新研究却颠覆了这一期待,揭示了一个令人意外的结果。研究邀请了16位...

一键理解开源项目:两个自动生成GitHub代码架构图与说明书工具

一、GitDiagram可以一键生成github代码仓库的架构图如果想要可视化github开源项目:https://github.com/luler/reflex_ai_fast,也可以直接把域名替换...

5分钟掌握 c# 网络通讯架构及代码示例

以下是C#网络通讯架构的核心要点及代码示例,按协议类型分类整理:一、TCP协议(可靠连接)1.同步通信//服务器端usingSystem.Net.Sockets;usingTcpListene...

从复杂到优雅:用建造者和责任链重塑代码架构

引用设计模式是软件开发中的重要工具,它为解决常见问题提供了标准化的解决方案,提高了代码的可维护性和可扩展性,提升了开发效率,促进了团队协作,提高了软件质量,并帮助开发者更好地适应需求变化。通过学习和应...

低代码开发当道,我还需要学习LangChain这些框架吗?| IT杂谈

专注LLM深度应用,关注我不迷路前两天有位兄弟问了个问题:当然我很能理解这位朋友的担忧:期望效率最大化,时间用在刀刃上,“不要重新发明轮子”嘛。铺天盖地的AI信息轰炸与概念炒作,很容易让人浮躁与迷茫。...

框架设计并不是简单粗暴地写代码,而是要先弄清逻辑

3.框架设计3.框架设计本节我们要开发一个UI框架,底层以白鹭引擎为例。框架设计的第一步并不是直接撸代码,而是先想清楚设计思想,抽象。一个一个的UI窗口是独立的吗?不是的,...

大佬用 Avalonia 框架开发的 C# 代码 IDE

AvalonStudioAvalonStudio是一个开源的跨平台的开发编辑器(IDE),AvalonStudio的目标是成为一个功能齐全,并且可以让开发者快速使用的IDE,提高开发的生产力。A...

轻量级框架Lagent 仅需20行代码即可构建自己的智能代理

站长之家(ChinaZ.com)8月30日消息:Lagent是一个专注于基于LLM模型的代理开发的轻量级框架。它的设计旨在简化和提高这种模型下代理的开发效率。LLM模型是一种强大的工具,可以...

取消回复欢迎 发表评论: