解密万亿参数M6模型预训练背后的分布式框架Whale
ccwgpt 2024-11-06 09:50 35 浏览 0 评论
最近,阿里云PAI团队和达摩院智能计算实验室一起发布“低碳版”巨模型M6,大幅降低万亿参数超大模型训练能耗。借助我们自研的Whale框架仅使用480卡GPU,即训练出了规模达人类神经元10倍的万亿参数多模态大模型M6,与传统海外公司实现万亿参数规模相比,能耗降低超八成、效率提升近11倍。
M6是国内首个实现商业化落地的多模态大模型。M6拥有超越传统AI的认知和创造能力,擅长绘画、写作、问答,在电商、制造业、文学艺术等诸多领域拥有广泛应用前景。
这里来为大家介绍支持万亿参数模型训练的Whale框架设计。
一 模型发展趋势和挑战
1 模型发展趋势
随着深度学习的火爆,模型的参数规模也增长迅速, OpenAI数据 显示:
- 2012年以前,模型计算耗时每2年增长一倍,和摩尔定律保持一致;
- 2012年后,模型计算耗时每3.4个月翻一倍,远超硬件发展速度;
近一年模型参数规模飞速增长,谷歌、英伟达、阿里、智源研究院都发布了万亿参数模型,有大厂也发布了百亿、千亿参数模型。同时,随着模型参数规模增大,模型效果也在逐步提高, Nvidia测试Bert模型 不同参数规模,发现模型困惑度随模型参数规模增加而降低。
Google在GShard paper中也发现MoETransformer 模型参数规模越大,翻译质量越高。
2 大模型训练的挑战
大模型带来模型效果提升的同时,也为训练框架带来更大的挑战,例如当我们要训练一个万亿规模的模型时会面临如下挑战:
- 训练难:
- GPU显存已经不够存放模型副本,数据并行已经不能满足需求;
- 需要框架提供新的并行策略,协同多GPU能力来存放和训练模型;
- 如何给用户提供简洁、易用的接口,让用户能很容易实现分布式版模型;
- 超大规模模型对计算效率、通信效率都带来很大挑战,如何提高计算和通信效率;
- 下游任务如何对接,如何支持批量预测和在线推理需求;
- 成本高:
- 以万亿模型为例,模型参数有4TB大小、梯度也有4TB,加上optimizer states和active tensor,显存需求巨大;
- 业界训练同等规模模型需要的资源:英伟达 3072 A100、谷歌 2048 TPU v3,成本太高很难落地;
- 如何降本增效,使用更少的资源,更快的训练收敛;
当前已经有一些分布式训练框架,例如:Horovod、Tensorflow Estimator、PyTorch DDP等支持数据并行,Gpipe、PipeDream、PipeMare等支持流水并行,Mesh Tensorflow、FlexFlow、OneFlow、MindSpore等支持算子拆分,但这些框架还有一些不足:
- 模式单一:很多框架只支持部分并行策略,不能完全支持各种混合并行;
- 接入门槛高:用户实现模型分布式版本难度大、成本高,需要有领域专家经验才能实现高效的分布式并行策略;
- 迁移代价大:不同分布式框架并行化实现割裂,不同框架有各自定义的DSL,当用户要切换并行策略时,需要学习各种接口,重新改写模型;
- 性能不理想:部分框架实现未考虑集群物理环境;
为了应对当前分布式训练的挑战,我们研发了分布式训练框架Whale,主要目标是:
- 统一多种并行策略:在一个框架中支持各种并行策略以及这些策略的各种组合;
- 简洁易用的接口:用户只需添加几行annotation即可完成并行策略的配置,模型代码不需要改动;
- 高效的训练框架:结合硬件资源、网络拓扑和模型进行协同优化,打造高效分布式训练框架;
二 PAI自研Whale框架
1 Whale架构
我们推出统一多种并行策略的高性能分布式训练框架Whale,从如下角度来应对分布式训练的挑战:
- 将不同并行化策略进行统一抽象、封装,在一套分布式训练框架中支持多种并行策略;
- 基于Tensorflow设计一套分布式并行接口,完全兼容Tensorflow,用户仅仅只需添加几行annotation就可以实现丰富的分布式并行策略;
- 结合模型结构和网络拓扑进行调度和通信优化,提供高效的分布式训练能力。
Whale框架如下图所示,主要分4个模块:
- API:提供简洁易用接口,让用户组合使用各种混合并行策略;
- Whale IR:将并行策略转成内部表达,通过TaskGraph、Multi-Dimension、VirtualDevices抽象来表达各种并行策略;
- Whale Engine:基于WhaleIR,通过图编辑工具来构建分布式执行图;
- Runtime:将分布式执行图转成TFGraph,再调用TF 的Runtime来执行;
2 Whale简介易用接口
Whale提供简洁易用的接口来描述各种并行策略,主要的原语:
- cluster:配置Virtual Device的划分方法
- replica:数据并行
- stage:划分TaskGraph
- pipeline:流水并行
- split:算子拆分
用这些接口可以组合各种并行策略,例如:
- 数据并行:
- 流水并行:
- 流水并行+数据并行:
- 更多并行策略示例:
3 Whale训练流程
使用Whale进行分布式训练流程:
- 并行策略配置:
- 使用Whale API来为模型配置并行策略,只需添加几行annotation,无需修改模型代码,方法如 2.2节 所示;
- 可以将模型划分为多个TaskGraph,TaskGraph支持配置多个并行策略,每个TaskGraph可以配置不同的并行策略;
- 虚拟资源划分:
- 按并行策略来划分Virtual Device,每个TaskGraph对应一个Virtual Device;
- 按GPU资源和网络topo来为Virtual Device选择Physical Device;
- 分布式执行图:
- 基于并行策略和资源分配信息,使用图编辑工具来编辑执行图(图拷贝、拆分、插入通信节点等),生成最终的分布式执行图;
- 调用TF的runtime来执行分布式Graph;
三 万亿M6模型预训练
万亿模型的算力需求非常大,为了降低算力需求,Whale中实现了MoE(Mixture-of-Experts)结构,MoE的主要特点是稀疏激活,使用Gating(Router)来为输入选择Top k的expert进行计算(k常用取值1、2),从而大大减少算力需求。
Whale中实现了MoE(Mixture-of-Experts) layer,并支持专家并行,将experts拆分到多个Devices上,降低单个Device的显存和算力需求。同时数据并行有利于提升训练的并发度,因此采用数据并行+专家并行组合的混合并行策略来训练M6模型:MoElayer采用专家并行,其他layer采用数据并行。
Whale中提供简洁易用的接口来进行模型的混合并行训练,只需要增加几行annotation来配置并行策略,模型本身不需要任何修改。M6模型采用数据并行+专家并行的策略,只需要增加如下图的annotation:
同时为了节约训练资源,提高训练效率,Whale中提供各种优化技术:
显存优化:
- Auto Gradient Checkpoint,自动选择最优checkpoint节点,节约activation的显存;
- Group-wise Apply,优化Optimizer Apply阶段的显存;
- CPU Offload技术,优化Optimizer status和Weight的显存;
- 通信池化,控制通信的数据块大小和并发,节约通信的显存;
计算、通信加速:
- 采用DP+EP混合并行策略,降低算力需求;
- 采用分组融合通信、半精度通信、拓扑感知的All2All通信算子等技术来提高通信效率;
- 结合混合精度、编译优化等技术提高训练效率;
借助Whale框架,首次在480 V100 上,3天内完成万亿M6模型的预训练。相比此前英伟达使用3072 A100 GPU实现万亿参数、谷歌使用2048 TPU实现1.6万亿参数大模型,此次达摩院仅使用480卡V100 32G GPU就实现了万亿模型M6,节省算力资源超80%,且训练效率提升近11倍。
四 结语
模型参数规模已越来越大,大模型已成为发展趋势,为解决超大模型训练的挑战,我们自研Whale框架,将不同并行化策略进行统一抽象、封装,在一套分布式训练框架中支持多种并行策略。Whale提供简洁易用的接口,用户只需添加几行annotation即可实现各种并行策略,不需要对模型本身进行修改。同时我们结合硬件资源、网络topo、模型进行软硬件协同优化,提供高效分布式训练框架。
通过Whale框架,我们用480 V100 GPU卡训练万亿规模模型,并在3天内完成模型训练收敛,为超大规模模型训练落地提供了可能,后续我们会进一步完善Whale框架,从更大规模、更快速度、更高性价比3个维度去扩展Whale框架的能力。同时也会推动Whale能力在更多业务场景落地,让技术能力到产品能力的转变。
如果您觉得文章对您有帮助,可以点赞评论转发支持一下~蟹蟹!
原文链接:https://www.tuicool.com/articles/niQ7nmj
相关推荐
- 一个基于.Net Core遵循Clean Architecture原则开源架构
-
今天给大家推荐一个遵循CleanArchitecture原则开源架构。项目简介这是基于Asp.netCore6开发的,遵循CleanArchitecture原则,可以高效、快速地构建基于Ra...
- AI写代码翻车无数次,我发现只要提前做好这3步,bug立减80%
-
写十万行全是bug之后终于找到方法了开发"提示词管理助手"新版本那会儿,我差点被bug整崩溃。刚开始两周,全靠AI改代码架构,结果十万行程序漏洞百出。本来以为AI说没问题就稳了,结果...
- OneCode低代码平台的事件驱动设计:架构解析与实践
-
引言:低代码平台的事件驱动范式在现代软件开发中,事件驱动架构(EDA)已成为构建灵活、松耦合系统的核心范式。OneCode低代码平台通过创新性的注解驱动设计,将事件驱动理念深度融入平台架构,实现了业务...
- 国内大厂AI插件评测:根据UI图生成Vue前端代码
-
在IDEA中安装大厂的AI插件,打开ruoyi增强项目:yudao-ui-admin-vue31.CodeBuddy插件登录腾讯的CodeBuddy后,大模型选择deepseek-v3,输入提示语:...
- AI+低代码技术揭秘(二):核心架构
-
本文档介绍了为VTJ低代码平台提供支持的基本架构组件,包括Engine编排层、Provider服务系统、数据模型和代码生成管道。有关UI组件库和widget系统的信息,请参阅UI...
- GitDiagram用AI把代码库变成可视化架构图
-
这是一个名为gitdiagram的开源工具,可将GitHub仓库实时转换为交互式架构图,帮助开发者快速理解代码结构。核心功能一键可视化:替换GitHubURL中的"hub...
- 30天自制操作系统:第六天:代码架构整理与中断处理
-
1.拆开bootpack.c文件。根据设计模式将对应的功能封装成独立的文件。2.初始化pic:pic(可编程中断控制器):在设计上,cpu单独只能处理一个中断。而pic是将8个中断信号集合成一个中断...
- AI写代码越帮越忙?2025年研究揭露惊人真相
-
近年来,AI工具如雨后春笋般涌现,许多人开始幻想程序员的未来就是“对着AI说几句话”,就能轻松写出完美的代码。然而,2025年的一项最新研究却颠覆了这一期待,揭示了一个令人意外的结果。研究邀请了16位...
- 一键理解开源项目:两个自动生成GitHub代码架构图与说明书工具
-
一、GitDiagram可以一键生成github代码仓库的架构图如果想要可视化github开源项目:https://github.com/luler/reflex_ai_fast,也可以直接把域名替换...
- 5分钟掌握 c# 网络通讯架构及代码示例
-
以下是C#网络通讯架构的核心要点及代码示例,按协议类型分类整理:一、TCP协议(可靠连接)1.同步通信//服务器端usingSystem.Net.Sockets;usingTcpListene...
- 从复杂到优雅:用建造者和责任链重塑代码架构
-
引用设计模式是软件开发中的重要工具,它为解决常见问题提供了标准化的解决方案,提高了代码的可维护性和可扩展性,提升了开发效率,促进了团队协作,提高了软件质量,并帮助开发者更好地适应需求变化。通过学习和应...
- 低代码开发当道,我还需要学习LangChain这些框架吗?| IT杂谈
-
专注LLM深度应用,关注我不迷路前两天有位兄弟问了个问题:当然我很能理解这位朋友的担忧:期望效率最大化,时间用在刀刃上,“不要重新发明轮子”嘛。铺天盖地的AI信息轰炸与概念炒作,很容易让人浮躁与迷茫。...
- 框架设计并不是简单粗暴地写代码,而是要先弄清逻辑
-
3.框架设计3.框架设计本节我们要开发一个UI框架,底层以白鹭引擎为例。框架设计的第一步并不是直接撸代码,而是先想清楚设计思想,抽象。一个一个的UI窗口是独立的吗?不是的,...
- 大佬用 Avalonia 框架开发的 C# 代码 IDE
-
AvalonStudioAvalonStudio是一个开源的跨平台的开发编辑器(IDE),AvalonStudio的目标是成为一个功能齐全,并且可以让开发者快速使用的IDE,提高开发的生产力。A...
- 轻量级框架Lagent 仅需20行代码即可构建自己的智能代理
-
站长之家(ChinaZ.com)8月30日消息:Lagent是一个专注于基于LLM模型的代理开发的轻量级框架。它的设计旨在简化和提高这种模型下代理的开发效率。LLM模型是一种强大的工具,可以...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- 框架图 (58)
- flask框架 (53)
- quartz框架 (51)
- abp框架 (47)
- springmvc框架 (49)
- 分布式事务框架 (65)
- scrapy框架 (56)
- shiro框架 (61)
- 定时任务框架 (56)
- java日志框架 (61)
- mfc框架 (52)
- abb框架断路器 (48)
- beego框架 (52)
- java框架spring (58)
- grpc框架 (65)
- tornado框架 (48)
- 前端框架bootstrap (54)
- orm框架有哪些 (51)
- 知识框架图 (52)
- ppt框架 (55)
- 框架图模板 (59)
- 内联框架 (52)
- cad怎么画框架 (58)
- ssm框架实现登录注册 (49)
- oracle字符串长度 (48)