良心推荐!机器学习和深度学习最佳框架
ccwgpt 2024-09-17 12:44 27 浏览 0 评论
机器学习框架和深度学习框架之间是有区别的。本质上,机器学习框架涵盖用于分类,回归,聚类,异常检测等各种学习方法,并且其可以不包括神经网络方法。深度学习或深度神经网络(DNN)框架涵盖具有许多隐藏层的神经网络拓扑。层越多,可用于聚类和分类的特征越复杂。
Caffe,CNTK,DeepLearning4j,Keras,MXNet和TensorFlow是深度学习框架。Scikit-learning和Spark MLlib是机器学习框架。而Theano跨越了这两个类别。
一般来说,简单的机器学习方法不需要GPU加速。虽然你可以在一个或多个CPU上训练DNN,但这种训练往往是缓慢的,需要训练的神经元和层越多,可用于训练的数据越多,需要的时间就越长。
Caffe
Caffe深度学习项目,最初是一个强大的图像分类框架,目前似乎停滞不前,它已被卡在1.0版RC3一年多了,并且其创始人已离开该项目 。但它仍然有良好的卷积网络图像识别和良好的Nvidia CUDA GPU支持。但它的模型通常需要大量的GPU内存(超过1GB)运行。
Caffe有命令行,Python和Matlab接口,它依靠ProtoText文件来定义模型和解算器。Caffe在其自己的模型模式中逐层定义网络。当数据和派生数据向前向后遍历网络时,Caffe存储,通信和操作信息为blob(二进制对象),内部是以C连续方式存储的N维数组。
Caffe已经证明其在图像分类中的有效性,但它的鼎盛时期似乎已经过去了。除非现有的Caffe模型符合你的需要,或者可以根据你的目的进行微调,否则,我建议使用TensorFlow,MXNet或CNTK。
Microsoft认知工具包
Microsoft Cognitive Toolkit是一个快速的易使用的深度学习软件包,但与TensorFlow相比,其范围有限。它有各种各样的模型和算法,极好的支持Python和Jupyter notebook,一个有趣的声明性BrainScript神经网络配置语言,以及在Windows和Ubuntu Linux上可自动部署。
在缺点方面,当我审查Beta 1文档时发现还没完全更新到CNTK 2,并且包没有MacOS支持。虽然自Beta 1以来,CNTK 2有许多改进,包括新的内存压缩模式,以减少GPU和新的Nuget安装包的内存使用,但MacOS支持仍然缺失。
CNTK 2组件可以处理来自Python,C ++或BrainScript的多维密集或稀疏数据。认知工具包包括各种各样的神经网络类型:FFN(前馈),CNN(卷积),RNN / LSTM(递归/长期短期记忆)等。它支持强化学习,生成监督和非监督学习,自动超参数调整,以及从Python添加新的,用户定义的核心组件在GPU上的能力。它能够在多个GPU和机器上做到精确的并行。
MXNet
MXNet是一个便携式,可扩展的深度学习库,是亚马逊推出的DNN框架选择。MXNet可跨多个主机扩展到多个GPU,线性扩展效率接近85%,具有出色的开发速度,可编程性和可移植性。它不同程度的支持Python,R,Scala,Julia和C ++,它允许混合命令式编程风格。
MXNet目前支持在Python,R,Scala,Julia和C ++中构建和训练模型,训练的MXNet模型也可以用于Matlab和JavaScript中的预测。无论选择哪种语言来构建模型,MXNet都会调用优化的C ++后端引擎。
Scikit-learn
Scikit-learn Python框架有广泛的可靠的机器学习算法,但没有深入学习。如果你是一个Python的粉丝,Scikit-learn可能是你最好的选择。Scikit-learn是一个强大的,成熟的机器学习库与各种各样的成熟算法集成。它相对容易安装,学习和使用,它有很好的例子和教程。
另一方面,Scikit-learn不包括深度学习或强化学习,缺少图形模型和序列预测,并且不能真正使用除Python之外的语言。它不支持PyPy,Python即时编译器或GPU。它使用Cython来处理快速函数,例如内循环。
InfoWorld Scorecard | Models and algorithms (25%) | Ease of development (25%) | Documentation (20%) | Performance (20%) | Ease of deployment (10%) | Overall Score (100%) |
Caffe 1.0 RC3 | 8 | 8 | 7 | 9 | 8 | 8.0 |
Microsoft Cognitive Toolkit v2.0 Beta 1 | 8 | 9 | 8 | 10 | 9 | 8.8 |
MXNet v0.7 | 8 | 8 | 7 | 10 | 8 | 8.2 |
Scikit-learn 0.18.1 | 9 | 9 | 9 | 8 | 9 | 8.8 |
Spark MLlib 2.01 | 9 | 8 | 8 | 9 | 8 | 8.5 |
TensorFlow r0.10 | 9 | 8 | 9 | 10 | 8 | 8.9 |
Spark MLlib
Spark MLlib是Spark的开源机器学习库,提供常见的机器学习算法,如分类,回归,聚类和协同过滤(但不包括DNN)以及特征提取,转换,维数缩减以及构建,评估和调整机器学习管道。Spark MLlib还包括用于保存和加载算法,用于数据处理以及进行线性代数和统计的实用程序。
Spark MLlib是在Scala中编写的,并使用线性代数包BreezeBreeze依靠netlib-java来优化数值处理,虽然在开源分布中意味着优化使用CPU。Databricks提供与GPU配合使用的定制Spark集群,这有可能带来一个10倍的速度改进,用于训练具有大数据的复杂机器学习模型。
Spark MLlib拥有针对Scala和Java的完整API,主要是针对Python的完整API以及针对R的部分API。可以通过计算示例来获得良好的覆盖率:54个Java和60个Scala机器学习示例,52个Python 机器学习示例,5个R示例。
TensorFlow
TensorFlow,Google的便携式机器学习和神经网络库,执行和扩展很好,虽然它有点难学。TensorFlow拥有各种各样的模型和算法,并且在具有GPU(用于培训)或Google TPU(用于生产规模预测)的硬件上具有出色的性能。它还具有对Python的良好支持,良好的文档和软件,用于显示和理解描述其计算TensorBoard的数据流图。
TensorFlow可以方便地处理各种神经网络,包括目前正在转换图像识别和语言处理领域的深度CNN和LSTM循环模型。调试异步网络求解器非常简单,TensorBoard软件可以帮助可视化图形。
从Caffe,Microsoft Cognitive Toolkit,MXNet和TensorFlow的深度学习包中选择一个是很困难的决定。我不建议选择Caffe,因为它的发展停滞不前。然而,选择其他三个中的一个也很棘手。
Cognitive Toolkit现在有Python和C ++ API以及网络配置语言BrainScript。 如果喜欢使用配置文件,那么Cognitive Toolkit可能是一个不错的选择。但它似乎不像TensorFlow一样成熟,它不能在MacOS上运行。
MXNet支持Python,R,Scala,Julia和C ++,但其最支持的API是用于Python的。MXNet在多个主机的多个GPU上展现出良好的扩展性(85%的线性)。
TensorFlow可能是三个包中最成熟的,并且它是一个很好的选择,TensorFlow有基本的构建块,但也需要写大量的代码来描述一个神经网络。有三个简化的API与TensorFlow一起来解决这个问题:tf.contrib.learn,TF-Slim和Keras。支持TensorFlow的最终考虑是TensorBoard,这对于可视化和理解数据流图非常有用。
相关推荐
- MFC、Qt、WPF?该用哪个?(mfc和wpf区别)
-
MFC、Qt和WPF都是流行的框架和工具,用于开发图形用户界面(GUI)应用程序。选择哪个框架取决于你的具体需求和偏好。MFC(MicrosoftFoundationClass)是微软提供的框架,...
- 一款WPF开发的通讯调试神器(支持Modbus RTU、MQTT调试)
-
我们致力于探索、分享和推荐最新的实用技术栈、开源项目、框架和实用工具。每天都有新鲜的开源资讯等待你的发现!项目介绍Wu.CommTool是一个基于C#、WPF、Prism、MaterialDesign...
- 关于面试资深C#、WPF开发工程师的面试流程和问题
-
一、开场(2-3分钟)1.欢迎应聘者,简单介绍公司和面试流程。2.询问应聘者是否对公司或岗位有初步的问题。二、项目经验与技术应用(10-20分钟)1.让应聘者详细介绍几个他参与过的C#、...
- C# WPF MVVM模式Prism框架下事件发布与订阅
-
01—前言处理同模块不同窗体之间的通信和不同模块之间不同窗体的通信,Prism提供了一种事件机制,可以在应用程序中低耦合的模块之间进行通信,该机制基于事件聚合器服务,允许发布者和订阅者之间通过事件进行...
- WPF 机械类组件动画制作流程简述(wps上怎么画机械结构简图)
-
WPF机械类组件动画制作流程简述独立观察员2025年3月4日一、创建组件创建组件用户控件,将组件的各部分“零件”(图片)拼装在一起,形成组件的默认状态:二、给运动部分加上Rend...
- C#上位机WinForm和WPF选哪个?工控老油条的"血泪史"
-
作为一个从互联网卷进工控坑的"跨界难民",在这会摸鱼的时间咱就扯一下上位机开发选框架这档子破事。当年我抱着WPF的酷炫动画一头扎进车间,结果被产线老师傅一句"你这花里胡哨的玩意...
- 【一文扫盲】WPF、Winform、Electron有什么区别?
-
近年来,随着软件开发的不断发展,开发人员面临着选择适合他们项目的各种框架和工具的挑战。在桌面应用程序开发领域,WPF、Winform和Electron是三个备受关注的技术。本文将介绍这三者的区别,帮助...
- 一个开源、免费、强大且美观的WPF控件库
-
我们致力于探索、分享和推荐最新的实用技术栈、开源项目、框架和实用工具。每天都有新鲜的开源资讯等待你的发现!项目介绍HandyControl是一套基于WPF(WindowsPresentationF...
- WPF 根据系统主题自动切换浅色与深色模式
-
WPF根据系统主题自动切换浅色与深色模式控件名:Resources作者:WPFDevelopersOrg-驚鏵原文链接[1]:https://github.com/WPFDevelopers...
- WPF与WinForm的本质区别(wpf与maui)
-
在Windows应用程序开发中,WinForm和WPF是两种主要的技术框架。它们各自有不同的设计理念、渲染机制和开发模式。本文将详细探讨WPF与WinForm的本质区别,并通过示例进行说明。渲染机制W...
- Win10/Win11效率神器再进化:微软发布PowerToys 0.90.0版本
-
IT之家4月1日消息,微软今天(4月1日)更新PowerToys,在最新发布的0.90.0版本中,修复多个BUG之外,引入多项功能更新,为Windows10、Windows...
- 一款非常漂亮的WPF管理系统(wpf架构及特性)
-
我们致力于探索、分享和推荐最新的实用技术栈、开源项目、框架和实用工具。每天都有新鲜的开源资讯等待你的发现!WPFManager项目介绍该项目是一款WPF开发的管理系统,数据库采用的MSSqlserv...
- WPF 实现描点导航(wpf按钮的点击事件)
-
WPF实现描点导航控件名:NavScrollPanel作者:WPFDevelopersOrg-驚鏵原文链接[1]:https://github.com/WPFDevelopersOrg/WPF...
- 微软更新基于Win11的Validation OS 2504:增强 .NET与WPF
-
IT之家5月1日消息,科技媒体NeoWin今天(5月1日)发布博文,报道称微软公司更新基于Windows11的ValidationOS,增强支持.NET和WPF,并优...
- WPF的技术架构与优势(wpf的前景)
-
WindowsPresentationFoundation(WPF)是一个现代化的用户界面框架,专为构建Windows应用程序而设计。它通过分层的技术架构和丰富的功能集,提供了全面的应用程...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- MVC框架 (46)
- spring框架 (46)
- 框架图 (58)
- bootstrap框架 (43)
- flask框架 (53)
- quartz框架 (51)
- abp框架 (47)
- jpa框架 (47)
- laravel框架 (46)
- express框架 (43)
- springmvc框架 (49)
- 分布式事务框架 (65)
- scrapy框架 (52)
- java框架spring (43)
- grpc框架 (55)
- orm框架有哪些 (43)
- ppt框架 (48)
- 内联框架 (52)
- winform框架 (46)
- gui框架 (44)
- cad怎么画框架 (58)
- ps怎么画框架 (47)
- ssm框架实现登录注册 (49)
- oracle字符串长度 (48)
- oracle提交事务 (47)