百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

Oracle向量数据库操作的一些随手笔记

ccwgpt 2024-11-23 12:09 28 浏览 0 评论

1. Basic Demo:

| c(2,6). . b(5,6)
| .
| .
| a(2,2)
|_________________________

|b-a| = sqrt( (5-2)^2 + (6-2)^2 ) = 5

SELECT VECTOR_DISTANCE( vector('[2,2]'), vector('[5,6]'), EUCLIDEAN ) as distance;

How about COSINE?

CREATE TABLE IF NOT EXISTS embedding_store_hysun (
collection_name VARCHAR2(200) NOT NULL,
embedding VECTOR(*, FLOAT32) NOT NULL,
doc CLOB NOT NULL,
src VARCHAR2(500)
);

############################ In database embedding ############################

#EXEC DBMS_VECTOR.DROP_ONNX_MODEL(model_name => 'doc_model', force => true);
#SQL> grant DB_DEVELOPER_ROLE to vector;
SQL> grant create mining model to pocuser;
Grant succeeded.
SQL> create or replace directory HYSUN_DUMP as '/u01/ords_sw/hysun_dump';
Directory HYSUN_DUMP created.
SQL> grant read on directory HYSUN_DUMP to pocuser;
Grant succeeded.

EXECUTE DBMS_VECTOR.LOAD_ONNX_MODEL('HYSUN_DUMP','bge-base-zh-v1.5.onnx','hysun_bge_zh_model',JSON('{"function" : "embedding", "embeddingOutput" : "embedding"}'));

SELECT MODEL_NAME, MINING_FUNCTION, ALGORITHM, ALGORITHM_TYPE, MODEL_SIZE
FROM USER_MINING_MODELS;

SQL> INSERT INTO embedding_store_hysun select 'DB_EMBED_TEST0', VECTOR_EMBEDDING(hysun_bge_zh_model USING 'Minimum Age to Get a Licence The minimum age to get a licence. minimum age' as input), 'Minimum Age to Get a Licence The minimum age to get a licence. minimum age', '/home/hysunhe/projects/oracle_vectordb/source_data/cdc_poc/QA_1.txt' from dual;
1 row inserted.

SQL> INSERT INTO embedding_store_hysun select 'DB_EMBED_TEST0', VECTOR_EMBEDDING(hysun_bge_zh_model USING 'Minimum Requirements for Enrolment The list of requirements/ enrolment prerequisites that needs to be met before enrolment. class 3/3a, Class 3A, class 2B, class 2, minimum requirements, enrolment' as input), 'Minimum Requirements for Enrolment The list of requirements/ enrolment prerequisites that needs to be met before enrolment. class 3/3a, Class 3A, class 2B, class 2, minimum requirements, enrolment', '/home/hysunhe/projects/oracle_vectordb/source_data/cdc_poc/QA_2.txt' from dual;
1 row inserted.

SQL> SELECT VECTOR_EMBEDDING(hysun_bge_zh_model USING 'mininum age to get a license' as input) AS embedding;

SELECT
collection_name,
embedding,
doc,
src,
VECTOR_DISTANCE(embedding, VECTOR_EMBEDDING(hysun_bge_zh_model USING 'mininum age to get a license' as input), COSINE) as distance
FROM embedding_store_hysun
WHERE
collection_name = 'DB_EMBED_TEST0'
ORDER BY distance
FETCH FIRST 3 ROWS ONLY;

######################## In database embedding end ########################

### Index:

show parameter vector_memory_size;
ALTER SYSTEM SET vector_memory_size=ON SCOPE=BOTH;
SELECT value FROM V$PARAMETER WHERE name='sga_target'; -- (max vector_memory_size = 70% SGA)
SELECT CON_ID, sum(alloc_bytes) / 1024 / 1024 FROM V$VECTOR_MEMORY_POOL GROUP BY CON_ID;
SELECT CON_ID, sum(USED_BYTES) / 1024 / 1024 FROM V$VECTOR_MEMORY_POOL GROUP BY CON_ID;

############################################################

In-Memory Neighbor Graph Vector Index(HNSW)

############################################################

create table galaxies (id number, name varchar2(50), doc varchar2(500), embedding vector);
insert into galaxies values (1, 'M31', 'Messier 31 is a barred spiral galaxy in the Andromeda constellation which has a lot of barred spiral galaxies.', '[0,2,2,0,0]');
insert into galaxies values (2, 'M33', 'Messier 33 is a spiral galaxy in the Triangulum constellation.', '[0,0,1,0,0]');
insert into galaxies values (3, 'M58', 'Messier 58 is an intermediate barred spiral galaxy in the Virgo constellation.', '[1,1,1,0,0]');
insert into galaxies values (4, 'M63', 'Messier 63 is a spiral galaxy in the Canes Venatici constellation.', '[0,0,1,0,0]');
insert into galaxies values (5, 'M77', 'Messier 77 is a barred spiral galaxy in the Cetus constellation.', '[0,1,1,0,0]');
insert into galaxies values (6, 'M91', 'Messier 91 is a barred spiral galaxy in the Coma Berenices constellation.', '[0,1,1,0,0]');
insert into galaxies values (7, 'M49', 'Messier 49 is a giant elliptical galaxy in the Virgo constellation.', '[0,0,0,1,1]');
insert into galaxies values (8, 'M60', 'Messier 60 is an elliptical galaxy in the Virgo constellation.', '[0,0,0,0,1]');
insert into galaxies values (9, 'NGC1073', 'NGC 1073 is a barred spiral galaxy in Cetus constellation.', '[0,1,1,0,0]');
SELECT name
FROM galaxies
ORDER BY VECTOR_DISTANCE( embedding, to_vector('[0,1,1,0,0]'), COSINE )
FETCH FIRST 3 ROWS ONLY;
SELECT name,
ROUND( VECTOR_DISTANCE( embedding, to_vector('[0,1,1,0,0]'), COSINE ), 2) as distance
FROM galaxies
ORDER BY distance
FETCH APPROXIMATE FIRST 4 ROWS ONLY;
-- WITH TARGET ACCURACY 90
EXPLAIN PLAN FOR
SELECT name,
VECTOR_DISTANCE( embedding, to_vector('[0,1,1,0,0]'), COSINE ) as distance
FROM galaxies
ORDER BY distance
FETCH APPROXIMATE FIRST 4 ROWS ONLY;
select plan_table_output from table(dbms_xplan.display('plan_table',null,'all'));
CREATE VECTOR INDEX galaxies_hnsw_idx ON galaxies (embedding) ORGANIZATION
INMEMORY NEIGHBOR GRAPH
DISTANCE COSINE
WITH TARGET ACCURACY 95;
CREATE VECTOR INDEX galaxies_hnsw_idx ON galaxies (embedding) ORGANIZATION
INMEMORY NEIGHBOR GRAPH
DISTANCE COSINE
WITH TARGET ACCURACY 90 PARAMETERS (type HNSW, neighbors 40, efconstruction
500);
SELECT name,
ROUND(VECTOR_DISTANCE( embedding, to_vector('[0,1,1,0,0]'), COSINE ), 3) distance
FROM galaxies
WHERE name <> 'NGC1073'
ORDER BY distance
FETCH APPROXIMATE FIRST 4 ROWS ONLY WITH TARGET ACCURACY 90;
drop INDEX galaxies_hnsw_idx;

##############################################################

Neighbor Partition Vector Index (IVF)

##############################################################

CREATE VECTOR INDEX galaxies_ivf_idx ON galaxies (embedding) ORGANIZATION
NEIGHBOR PARTITIONS
DISTANCE COSINE
WITH TARGET ACCURACY 95;
CREATE VECTOR INDEX galaxies_ivf_idx ON galaxies (embedding) ORGANIZATION
NEIGHBOR PARTITIONS
DISTANCE COSINE
WITH TARGET ACCURACY 90 PARAMETERS (type IVF, neighbor partitions 100);
The APPROX and APPROXIMATE keywords are optional. If omitted while connected to an
ADB-S instance, an approximate search using a vector index is attempted if one
exists.
-- Accuracy report
SET SERVEROUTPUT ON
declare
report varchar2(128);
begin
report := dbms_vector.index_accuracy_query(
OWNER_NAME => 'POCUSER',
INDEX_NAME => 'GALAXIES_IVF_IDX',
qv => to_vector('[0,1,1,0,0]'),
top_K => 10,
target_accuracy => 95 );
dbms_output.put_line(report);
end;
/

-- Index detail:

grant read on VECSYS.VECTOR$INDEX to pocuser;
SELECT JSON_SERIALIZE(IDX_PARAMS RETURNING VARCHAR2 PRETTY)
FROM VECSYS.VECTOR$INDEX WHERE IDX_NAME = 'GALAXIES_IVF_IDX';
CREATE PUBLIC DATABASE LINK LinkToLA1 CONNECT TO vectordemo IDENTIFIED BY "welcome1" USING '146.235.233.91:1521/pdb1.sub08030309530.justinvnc1.oraclevcn.com';
select OWNER, DB_LINK, USERNAME, VALID, HOST from all_db_links;
alter session set global_names=false;
select 1 from dual@LINKTOLA1;

#### Memo

grant create any directory to pocuser;
create directory RAG_DOC_DIR as '/u01/hysun/rag_docs';
create table RAG_FILES (
file_name varchar2(500),
file_content BLOB
);
create table RAG_INDB_PIPELINE (
id number,
name varchar2(50),
doc varchar2(500),
embedding VECTOR
);
Declare
mFile VARCHAR2(500) := 'Oracle向量数据库_lab.pdf';
mBLOB BLOB := Empty_Blob();
mBinFile BFILE := BFILENAME('RAG_DOC_DIR', mFile);
Begin
DBMS_LOB.OPEN(mBinFile, DBMS_LOB.LOB_READONLY); -- Open BFILE
DBMS_LOB.CreateTemporary(mBLOB, TRUE, DBMS_LOB.Session); -- BLOB locator initialization
DBMS_LOB.OPEN(mBLOB, DBMS_LOB.LOB_READWRITE); -- Open BLOB locator for writing
DBMS_LOB.LoadFromFile(mBLOB, mBinFile, DBMS_LOB.getLength(mBinFile)); -- Reading BFILE into BLOB
DBMS_LOB.CLOSE(mBLOB); -- Close BLOB locator
DBMS_LOB.CLOSE(mBinFile); -- Close BFILE

INSERT INTO RAG_FILES(file_name, file_content) values (mFile, mBLOB);
commit;
End;
/
insert into RAG_FILES(file_name, file_content) values('oracle-vector-lab', to_blob(bfilename('RAG_DOC_DIR', 'Oracle向量数据库_lab.pdf')));
commit;
select DBMS_LOB.getLength(FILE_CONTENT) from RAG_FILES;
drop table rag_doc_chunks purge;
create table rag_doc_chunks (doc_id varchar2(500), chunk_id number, chunk_data varchar2(4000), chunk_embedding vector);
-- utl_to_text: PDF -> TEXT
-- utl_to_chunks: TEXT -> CHUNKS
-- utl_to_embeddings: CHUNKS -> VECTORS
insert into rag_doc_chunks
select
dt.file_name doc_id,
et.embed_id chunk_id,
et.embed_data chunk_data,
to_vector(et.embed_vector) chunk_embedding
from
rag_files dt,
dbms_vector_chain.utl_to_embeddings(
dbms_vector_chain.utl_to_chunks(
dbms_vector_chain.utl_to_text(dt.file_content),
json('{"normalize":"all"}')
),
json('{"provider":"database", "model":"mydoc_model"}')
) t,
JSON_TABLE(
t.column_value,
'$[*]' COLUMNS (
embed_id NUMBER PATH '$.embed_id',
embed_data VARCHAR2(4000) PATH '$.embed_data',
embed_vector CLOB PATH '$.embed_vector'
)
) et;
commit;
insert into rag_doc_chunks
select
dt.file_name doc_id,
et.embed_id chunk_id,
et.embed_data chunk_data,
to_vector(et.embed_vector) chunk_embedding
from
rag_files dt,
dbms_vector_chain.utl_to_embeddings(
dbms_vector_chain.utl_to_chunks(
dbms_vector_chain.utl_to_text(dt.file_content),
JSON('{ "by":"words",
"max":"240",
"overlap":"15",
"split":"recursively",
"language":"SIMPLIFIED CHINESE",
"normalize":"all" }')
),
json('{"provider":"database", "model":"mydoc_model"}')
) t,
JSON_TABLE(
t.column_value,
'$[*]' COLUMNS (
embed_id NUMBER PATH '$.embed_id',
embed_data VARCHAR2(4000) PATH '$.embed_data',
embed_vector CLOB PATH '$.embed_vector'
)
) et;
commit;
select
dbms_vector_chain.utl_to_chunks(TO_CLOB(FILE_CONTENT),
JSON('{ "by":"words",
"max":"240",
"overlap":"15",
"split":"recursively",
"language":"SIMPLIFIED CHINESE",
"normalize":"all" }'))
from RAG_FILES;
SELECT
dbms_vector.utl_to_embedding(
'This is a test',
json('{
"provider": "OCIGenAI",
"credential_name": "OCI_GENAI_CRED_FOR_APEX",
"url": "https://inference.generativeai.us-chicago-1.oci.oraclecloud.com/20231130/actions/embedText",
"model": "cohere.embed-multilingual-v3.0"
}')
) embedding
FROM dual;
SELECT
dbms_vector.utl_to_embedding(
'This is a test',
json('{
"provider": "database",
"model": "doc_model"
}')
) embedding
FROM dual;
create or replace directory MODELS_DIR as '/u01/hysun/models';
EXEC DBMS_VECTOR.DROP_ONNX_MODEL(model_name => 'mydoc_model', force => true);
-- BEGIN
-- DBMS_VECTOR.LOAD_ONNX_MODEL(
-- directory => 'MODELS_DIR',
-- file_name => 'bge-base-zh-v1.5.onnx',
-- model_name => 'mydoc_model',
-- metadata => JSON('{"function" : "embedding", "embeddingOutput" : "embedding", "input":{"input": ["DATA"]}}')
-- );
-- END;
-- /
BEGIN
DBMS_VECTOR.LOAD_ONNX_MODEL(
directory => 'MODELS_DIR',
file_name => 'bge-base-zh-v1.5.onnx',
model_name => 'mydoc_model'
);
END;
/
SELECT vector_embedding(mydoc_model using 'hello' as data);
select
chunk_data,
VECTOR_DISTANCE(chunk_embedding, VECTOR_EMBEDDING(mydoc_model USING '本次实验的先决条件' as data), COSINE) as distance
from rag_doc_chunks
order by distance
FETCH APPROX FIRST 1 ROWS ONLY;
-- grant CREATE CREDENTIAL
BEGIN
DBMS_VECTOR_CHAIN.CREATE_CREDENTIAL (
CREDENTIAL_NAME => 'LAB_OPENAI_CRED',
PARAMS => json('{ "access_token": "EMPTY" }')
);
END;
/
select dbms_vector_chain.utl_to_generate_text(
'Oracle 向量数据库是什么',
json('{
"provider": "openai",
"credential_name": "LAB_OPENAI_CRED",
"url": "http://146.235.226.110:8098/v1/chat/completions",
"model": "Qwen2-7B-Instruct"
}') ) from dual;
select *
from (
select
chunk_data
from rag_doc_chunks
order by VECTOR_DISTANCE(chunk_embedding, VECTOR_EMBEDDING(mydoc_model USING '本次实验的先决条件' as data), COSINE)
FETCH APPROX FIRST 3 ROWS ONLY
) dt,
dbms_vector_chain.utl_to_generate_text(
dt.chunk_data,
json('{
"provider": "openai",
"credential_name": "LAB_OPENAI_CRED",
"url": "http://146.235.226.110:8098/v1/chat/completions",
"model": "Qwen2-7B-Instruct"
}')
) rag
declare
l_question varchar2(500) := '本次实验的先决条件';
l_input CLOB;
l_clob CLOB;
j apex_json.t_values;
l_context CLOB;
l_rag_result CLOB;
begin
-- 第一步:从向量数据库中检索出与问题相似的内容
for rec in (
select
chunk_data
from rag_doc_chunks
order by VECTOR_DISTANCE(chunk_embedding, VECTOR_EMBEDDING(mydoc_model USING l_question as data), COSINE)
FETCH APPROX FIRST 3 ROWS ONLY
) loop
l_context := l_context || rec.chunk_data || chr(10);
end loop;

-- 第二步:提示工程:将相似内容和用户问题一起,组成大语言模型的输入
l_input := '你是一个诚实且专业的数据库知识问答助手,请仅仅根据提供的上下文信息内容,回答用户的问题,且不要试图编造答案。\n 以下是上下文信息:' || replace(l_context, chr(10), '\n') || '\n请用英文回答用户问题:' || l_question;


-- 第三步:调用大语言模型,生成RAG结果
for rec in (select dbms_vector_chain.utl_to_generate_text(
l_input,
json('{
"provider": "openai",
"credential_name": "LAB_OPENAI_CRED",
"url": "http://146.235.226.110:8098/v1/chat/completions",
"model": "Qwen2-7B-Instruct"
}')
) as rag from dual) loop
dbms_output.put_line('*** RAG Result: ' || rec.rag);
end loop;
-- apex_json.parse(j, l_clob);
-- l_rag_result := apex_json.get_varchar2(p_path => 'choices[%d].message.content', p0 => 1, p_values => j);

-- dbms_output.put_line('*** RAG Result: ' || l_rag_result);
end;
/

```

srvctl stop instance -d ai23 -i ai232 -force
srvctl status database -d ai23
srvctl start instance -d ai23 -i ai232

相关推荐

PPT 139 | 粉色渐变小清新春暖花开PPT模板

春暖花开,这是你制作PPT的世界粉色渐变小清新春暖花开PPT模板,共22P适用场合:工作总结/个人汇报/演讲培训等喜欢的可以赞一个更多类似PPT模板,搜【小清新】也可以,在线编辑,一键下载...

框架完整岗位竞聘报告PPT模板

需要源文件de可私!氢元素为您提供PPT模板、PNG元素免费、办公模板。工作述职汇报、计划总结、培训课件、节日庆典、营销策划、商业计划、宣传企业、产品发布、个人简历、毕业答辩、岗位竞聘、护理培训,...

PPT与视频相关的几个操作要点

都知道PPT中可以插入视频,而2010及以上版本插入后还可以对视频做各种处理,另外别忘了还可以直接将PPT导出成视频格式。插入视频方式往PPT中插入视频,除了【插入】|【视频】|【PC上的视频】这种方...

书写主题品管圈汇报PPT模板,主题框架,简约设计,品管圈必备

Hello大家好,我是帮帮。今天跟大家分享一张书写主题品管圈汇报PPT模板,主题框架,简约设计,品管圈必备。有个好消息!为了方便大家更快的掌握技巧,寻找捷径。请大家点击文章末尾的“了解更多”,在里面找...

【教学成果框架图】国家级获奖案例解析与可视化方案(实战版)

教学成果逻辑框架图的绘制精髓总结为“逻辑为骨,视觉为翼”。下面结合具体案例,手把手教你制作既专业又美观的成果框架图。一、设计理念:教育逻辑与视觉传达的融合教学成果框架图需体现三重逻辑:教育目标层(立德...

工作总结PPT模板完整框架 (30)

年中汇报PPT的超强框架来袭,职场人士的必备神器!

这套框架堪称完美,适用于各类工作汇报场景。它逻辑清晰,内容丰富,涵盖个人介绍、工作回顾、业绩成果、问题分析以及未来工作计划等常见汇报模块。PPT已包含600多页,所有元素均可自由编辑,数据图表也能轻松...

三个说话框架,提升逻辑思维,让你清晰表达

#暑期创作大赛#建立清晰的逻辑思维:三个说话框架的力量我们生活在一个充满语言交流的世界中。无论是在学校,工作场所,还是在社交场合,我们都需要有效地表达我们的观点和想法。然而,许多人都有表达上的困扰,他...

《石头记》人物原型故事之逻辑框架(一)

话说空空道人将《石头记》带往人世,又经东鲁孔梅溪醒题《风月宝鉴》,曹雪芹定名《金陵十二钗》,加之警幻仙子提醒防备新谱《红楼梦十二支曲》。蛮以为他人在闲适风月故事之于能够了然背后真实故事,怎耐一万年老怪...

如何搭建高效沟通与精彩演讲的逻辑结构

对于大多数人而言,说话有逻辑这件事难于登天。很多人在演讲、工作汇报中都会遇到诸如“我不知道你在说什么”、“你的重点是什么”、“你说话毫无逻辑”此类的评价,被认为是说话缺乏逻辑的人。那么如何成为一个说话...

「书讯」论证逻辑框架下说理写作模式研究

《论证逻辑框架下说理写作模式研究》作者:金建龙出版日期:2018年11月开本:16开出版社:经济管理出版社小编推荐提升大学生批判意识和理性说理能力是新时代背景下高等教育中通识教育和博雅教育的全新探索...

【一元脑花】青少年4D逻辑训练的基本框架

一、核心训练模块多维认知构建资源分布图谱:通过分析社会资源层级与流动规律,建立立体空间认知模型2DOC时空维度整合:将历史局势演变(纵向时间轴)与未来趋势预判(横向可能性轴)结合训练2DOC动态干预系...

提升写作逻辑,这5个框架你搭建好了吗?

每个人都有写作的愿望,也都想表达心中浩荡的情感,但多年过后,许多人依旧卡在“无话可说”“写不出结构”的怪圈里。有人慨叹:“浮云一别后,流水十年间”,梦想与现实总有一道沟壑横亘——此岸是满腹心事,彼岸...

2023年主观题法治思想知识框架图

...

学霸:2天吃透初一语文上学期核心预习知识框架图|暑假弯道超车

学霸:2天吃透初一语文上学期核心预习知识框架图|暑假弯道超车。具体如下:查看作者的个人主页获悉剩余的~...

取消回复欢迎 发表评论: