百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

Oracle绑定变量和审计功能影响性能吗?Python告诉你

ccwgpt 2024-11-26 01:04 48 浏览 0 评论

原文链接:https://www.modb.pro/dB/25243 (复制链接至浏览器,即可查看)


摘要:测试绑定变量对数据库性能的影响以及开通数据库审计功能对数据库性能的影响


一、概述

dba在工作中避不开的两个问题,sql使用绑定变量到底会有多少的性能提升?数据库的审计功能如果打开对数据库的性能会产生多大的影响?最近恰好都碰到了,索性做个实验。

  1. sql使用绑定变量对性能的影响
  2. 开通数据库审计功能对性能的影响

实验采用的办法很简单,就是通过python读取csv文件,然后将其导入到数据库中,最后统计程序执行完成所需要的时间


二、准备脚本

python脚本dataimporttest.py

# author: yangbao
# function: 通过导入csv,测试数据库性能

import cx_Oracle
import time


# 数据库连接串
DATABASE_URL = 'user/password@ip:1521/servicename'


class CsvDataImport:

    def __init__(self, use_bind):
        self.csv_name = 'test.csv'
        self.use_bind = use_bind
        if use_bind == 1:
            self.insert_sql = "insert into testtb values(:0, " \
                              "to_date(:1,'yyyy-mm-dd hh24:mi:ss'), " \
                              "to_date(:2,'yyyy-mm-dd hh24:mi:ss'), " \
                              ":3, :4, :5, :6, :7, :8, :9, :10, :11, :12, :13, :14, " \
                              ":15, :16, :17, :18, :19, :20, :21)"  # 使用绑定变量的sql
        else:
            self.insert_sql = "insert into testtb values({0}, " \
                              "to_date('{1}','yyyy-mm-dd hh24:mi:ss'), " \
                              "to_date('{2}','yyyy-mm-dd hh24:mi:ss'), " \
                              "{3}, {4}, '{5}', {6}, '{7}', {8}, {9}, {10}, {11}, {12}, {13}, {14}, " \
                              "{15}, {16}, {17}, {18}, {19}, {20}, {21})"  # 不使用绑定变量的sql

    def data_import(self):

            begin_time = time.perf_counter()

            try:
                conn = cx_Oracle.connect(DATABASE_URL)
                curs = conn.cursor()

                with open(self.csv_name) as f:
                    csv_contents = f.readlines()

                import_rows = 0

                message = '{} start to import'.format(self.csv_name)
                print(message)

                for line, csv_content in enumerate(csv_contents[1:]):

                    data = csv_content.split(',')
                    if self.use_bind == 1:
                        data = map(lambda x: None if x == '' else x, data)
                    else:
                        data = map(lambda x: 'null' if x == '' else x, data)
                    data = list(data)
                    data[-1] = data[-1].replace('\n', '')

                    if self.use_bind == 1:
                        curs.execute(self.insert_sql, data)  # 使用绑定变量的方式插入数据
                    else:
                        # print(self.insert_sql.format(*data))
                        curs.execute(self.insert_sql.format(*data))  # 使用非绑定变量的方式插入数据
                    import_rows += 1
                    if import_rows % 10000 == 0:
                        curs.execute('commit')
                        message = '{} has imported {} lines'.format(self.csv_name, import_rows)
                        print(message)

                conn.commit()
                curs.close()
                conn.close()

                end_time = time.perf_counter()

                elapsed = round(end_time - begin_time, 2)
                message = '{}, import rows: {}, use_bind: {}, elapsed: {}'.format(
                    self.csv_name, import_rows, self.use_bind, elapsed)
                print(message)

            except Exception as e:
                message = '{} import failed, reason: {}'.format(self.csv_name, str(e))
                print(message)


if __name__ == '__main__':
    CsvDataImport(use_bind=1).data_import()

csv文件test.csv(内容略)


三、测试sql使用绑定变量对性能的影响

a. 使用绑定变量

对库进行重启,目的是清空数据库内的所有缓存,避免对实验结果产生干扰

SQL> startup force;
SQL> drop table yang.testtb purge;
SQL> create table yang.testtb as select * from yang.test where 1=0;

运行脚本python dataimporttest.py

结果:test.csv, import rows: 227795, use_bind: 1, elapsed: 260.31

b. 不使用绑定变量

对库进行重启

SQL> startup force;
SQL> drop table yang.testtb purge;
SQL> create table yang.testtb as select * from yang.test where 1=0;

将脚本的最后一行CsvDataImport(use_bind=1).data_import()改为CsvDataImport(use_bind=0).data_import()

运行脚本python dataimporttest.py

结果:test.csv, import rows: 227795, use_bind: 0, elapsed: 662.82

可以看到同样的条件下,程序运行的时间,不使用绑定变量是使用绑定变量的2.54倍


四、测试数据库开启审计功能对性能的影响

查看数据库审计功能是否开启

SQL> show parameter audit 
NAME           TYPE        VALUE
-------------- ----------- ----------
audit_trail    string      NONE

统计sys.aud$这张表的行数

SQL> select count(*) from sys.aud$;

  COUNT(*)
----------
         0

所以可以直接拿第三步中的(a. 使用绑定变量)的结果作为没开通审计功能程序运行的时间

对库开通审计功能,并进行重启

SQL> alter system set audit_trail=db_extended scope=spfile;  # 如果设置成db,那么在sys.aud$里面sqltext将为空,也就是说看不到用户执行的sql语句,审计毫无意义
SQL> startup force;
SQL> drop table yang.testtb purge;
SQL> create table yang.testtb as select * from yang.test where 1=0;
SQL> audit insert table by yang;  # 开通对用户yang的insert操作审计

将脚本的最后一行CsvDataImport(use_bind=0).data_import()改为CsvDataImport(use_bind=1).data_import()

运行脚本python dataimporttest.py

结果:test.csv, import rows: 227795, use_bind: 1, elapsed: 604.23

与前面使用绑定变量但没有开通数据库审计功能,程序运行的时间,开通数据库审计功能是不开通数据库审计功能的2.32倍

再来看看sys.aud$这张表的大小

SQL> select count(*) from sys.aud$;

  COUNT(*)
----------
    227798

因sys.aud$这张表中的sqltext与sqlbind都是clob字段,因此需要通过下面的sql去统计该表所占用的空间

SQL> select sum(bytes) from dba_extents where segment_name in (
select distinct name from (select table_name, segment_name from dba_lobs where table_name='AUD#39;) 
unpivot(name for i in(table_name, segment_name)));

SUM(BYTES)
----------
 369229824

查看testtb这张表占用的空间

SQL> select sum(bytes) from dba_extents where segment_name in ('TESTTB');

SUM(BYTES)
----------
  37748736

可以看到对一个22万行的csv数据导入到数据库,审计的表占用的空间就达到了惊人的360M,而testtb这张表本身也才37M而已

通过上面的实验可以得出,对于数据库的审计功能,开通后会严重拖慢数据库的性能以及消耗system表空间!


五、总结

  1. 代码中尽量使用绑定变量
  2. 最好不要开通数据库的审计,可以通过堡垒机去实现对用户操作审计(ps:还请大家推荐个堡垒机厂商,这个才是本文最主要的目的_)

实验存在不严谨的地方,相关对比数据也仅作为参考

相关推荐

一个基于.Net Core遵循Clean Architecture原则开源架构

今天给大家推荐一个遵循CleanArchitecture原则开源架构。项目简介这是基于Asp.netCore6开发的,遵循CleanArchitecture原则,可以高效、快速地构建基于Ra...

AI写代码翻车无数次,我发现只要提前做好这3步,bug立减80%

写十万行全是bug之后终于找到方法了开发"提示词管理助手"新版本那会儿,我差点被bug整崩溃。刚开始两周,全靠AI改代码架构,结果十万行程序漏洞百出。本来以为AI说没问题就稳了,结果...

OneCode低代码平台的事件驱动设计:架构解析与实践

引言:低代码平台的事件驱动范式在现代软件开发中,事件驱动架构(EDA)已成为构建灵活、松耦合系统的核心范式。OneCode低代码平台通过创新性的注解驱动设计,将事件驱动理念深度融入平台架构,实现了业务...

国内大厂AI插件评测:根据UI图生成Vue前端代码

在IDEA中安装大厂的AI插件,打开ruoyi增强项目:yudao-ui-admin-vue31.CodeBuddy插件登录腾讯的CodeBuddy后,大模型选择deepseek-v3,输入提示语:...

AI+低代码技术揭秘(二):核心架构

本文档介绍了为VTJ低代码平台提供支持的基本架构组件,包括Engine编排层、Provider服务系统、数据模型和代码生成管道。有关UI组件库和widget系统的信息,请参阅UI...

GitDiagram用AI把代码库变成可视化架构图

这是一个名为gitdiagram的开源工具,可将GitHub仓库实时转换为交互式架构图,帮助开发者快速理解代码结构。核心功能一键可视化:替换GitHubURL中的"hub...

30天自制操作系统:第六天:代码架构整理与中断处理

1.拆开bootpack.c文件。根据设计模式将对应的功能封装成独立的文件。2.初始化pic:pic(可编程中断控制器):在设计上,cpu单独只能处理一个中断。而pic是将8个中断信号集合成一个中断...

AI写代码越帮越忙?2025年研究揭露惊人真相

近年来,AI工具如雨后春笋般涌现,许多人开始幻想程序员的未来就是“对着AI说几句话”,就能轻松写出完美的代码。然而,2025年的一项最新研究却颠覆了这一期待,揭示了一个令人意外的结果。研究邀请了16位...

一键理解开源项目:两个自动生成GitHub代码架构图与说明书工具

一、GitDiagram可以一键生成github代码仓库的架构图如果想要可视化github开源项目:https://github.com/luler/reflex_ai_fast,也可以直接把域名替换...

5分钟掌握 c# 网络通讯架构及代码示例

以下是C#网络通讯架构的核心要点及代码示例,按协议类型分类整理:一、TCP协议(可靠连接)1.同步通信//服务器端usingSystem.Net.Sockets;usingTcpListene...

从复杂到优雅:用建造者和责任链重塑代码架构

引用设计模式是软件开发中的重要工具,它为解决常见问题提供了标准化的解决方案,提高了代码的可维护性和可扩展性,提升了开发效率,促进了团队协作,提高了软件质量,并帮助开发者更好地适应需求变化。通过学习和应...

低代码开发当道,我还需要学习LangChain这些框架吗?| IT杂谈

专注LLM深度应用,关注我不迷路前两天有位兄弟问了个问题:当然我很能理解这位朋友的担忧:期望效率最大化,时间用在刀刃上,“不要重新发明轮子”嘛。铺天盖地的AI信息轰炸与概念炒作,很容易让人浮躁与迷茫。...

框架设计并不是简单粗暴地写代码,而是要先弄清逻辑

3.框架设计3.框架设计本节我们要开发一个UI框架,底层以白鹭引擎为例。框架设计的第一步并不是直接撸代码,而是先想清楚设计思想,抽象。一个一个的UI窗口是独立的吗?不是的,...

大佬用 Avalonia 框架开发的 C# 代码 IDE

AvalonStudioAvalonStudio是一个开源的跨平台的开发编辑器(IDE),AvalonStudio的目标是成为一个功能齐全,并且可以让开发者快速使用的IDE,提高开发的生产力。A...

轻量级框架Lagent 仅需20行代码即可构建自己的智能代理

站长之家(ChinaZ.com)8月30日消息:Lagent是一个专注于基于LLM模型的代理开发的轻量级框架。它的设计旨在简化和提高这种模型下代理的开发效率。LLM模型是一种强大的工具,可以...

取消回复欢迎 发表评论: