百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

Scrapy-Redis分布式爬虫框架详解-邮乐网

ccwgpt 2024-09-20 13:21 49 浏览 0 评论

文章目录

  • python编程快速上手(持续更新中…)
  • python爬虫从入门到精通
    • 一、scrapy_redis概念作用和流程
      • 2. scrapy_redis的概念
      • 3. scrapy_redis的作用
      • 4. scrapy_redis的原理
      • 5. scrapy_redis的工作流程
        • 5.2 scrapy_redis的流程
    • 二、scrapy_redis实现断点续爬
      • 1. 下载github的demo代码
      • 3. 运行dmoz爬虫,观察现象
      • 4. scrapy_redis的原理分析
        • 4.1 Scrapy_redis之RedisPipeline
        • 4.2 Scrapy_redis之RFPDupeFilter
        • 4.3 Scrapy_redis之Scheduler
        • 4.4 由此可以总结出request对象入队的条件
        • 5.2 动手实现分布式爬虫步骤
    • 三、爬取图书信息-邮乐网(https://ule.com)
      • 1.全部商品分类-图书音像
      • 3.邮乐爬虫-修改为分布式爬虫

一、scrapy_redis概念作用和流程

如果当前网站的数据比较庞大, 几十亿数据,明天交付,我们就需要使用分布式来更快的爬取数据

1. 分布式是什么

简单的说 分布式就是不同的节点(服务器,ip不同)共同完成一个任务

缺点:

加快运行速度,运行总资源不会少

分散,增加风险

2. scrapy_redis的概念

scrapy_redis是scrapy框架的基于redis的分布式组件

3. scrapy_redis的作用

Scrapy_redis在scrapy的基础上实现了更多,更强大的功能,具体体现在:

通过持久化请求队列和请求的指纹集合来实现:

断点续爬,记录

分布式快速抓取

4. scrapy_redis的原理

去重集合

任务队列

数据队列(存)

5. scrapy_redis的工作流程

5.1 回顾scrapy的流程

思考:那么,在这个基础上,如果需要实现分布式,即多台服务器同时完成一个爬虫,需要怎么做呢?

5.2 scrapy_redis的流程

在scrapy_redis中,所有的待抓取的request对象和指纹去重的request对象都存在所有的服务器公用的redis中

所有的服务器中的scrapy进程公用同一个redis中的request对象的队列

所有的request对象存入redis前,都会通过该redis中的request指纹集合进行判断,之前是否已经存入过

在默认情况下所有的数据会保存在redis中

二、scrapy_redis实现断点续爬

1. 下载github的demo代码

clone github scrapy-redis源码文件

git clone https://github.com/rolando/scrapy-redis.git

研究项目自带的demo

scrapy-redis/example-project/example

2. 观察dmoz文件

在domz爬虫文件中,实现方式就是之前的crawlspider类型的爬虫,修改allowed_domains与start_urls

from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule


class DmozSpider(CrawlSpider):
    """Follow categories and extract links."""
    name = 'dmoz'
    allowed_domains = ['dmoztools.net']
    start_urls = ['http://dmoztools.net/'] # 这里修改了url
    
    # 定义数据提取规则,使用了css选择器
    rules = [
        Rule(LinkExtractor(
            restrict_css=('.top-cat', '.sub-cat', '.cat-item')
        ), callback='parse_directory', follow=True),
    ]

    def parse_directory(self, response):
        for div in response.css('.title-and-desc'):
            yield {
 
                'name': div.css('.site-title::text').extract_first(),
                'description': div.css('.site-descr::text').extract_first().strip(),
                'link': div.css('a::attr(href)').extract_first(),
            }

但是在settings.py中多了以下内容,这几行表示scrapy_redis中重新实现的了去重的类,以及调度器,并且使用RedisPipeline管道类

SPIDER_MODULES = ['example.spiders']
NEWSPIDER_MODULE = 'example.spiders'

USER_AGENT = 'scrapy-redis (+https://github.com/rolando/scrapy-redis)'

# 设置重复过滤器的模块
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
# 设置调取器,scrap_redis中的调度器具备与数据库交互的功能
SCHEDULER = "scrapy_redis.scheduler.Scheduler"
# 设置当爬虫结束的时候是否保持redis数据库中的去重集合与任务队列
SCHEDULER_PERSIST = True
#SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderPriorityQueue"
#SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderQueue"
#SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderStack"

ITEM_PIPELINES = {
 
    'example.pipelines.ExamplePipeline': 300,
    # 当开启该管道,该管道将会把数据存到Redis数据库中
    'scrapy_redis.pipelines.RedisPipeline': 400,
}
# 设置redis数据库
REDIS_URL = "redis://127.0.0.1:6379"

LOG_LEVEL = 'DEBUG'

# Introduce an artifical delay to make use of parallelism. to speed up the
# crawl.
DOWNLOAD_DELAY = 0.5

3. 运行dmoz爬虫,观察现象

安装

pip install scrapy_redis

运行

cd scrapy-redis/example-project  scrapy crawl dmoz

我们执行domz的爬虫,会发现redis中多了一下三个键:

中止进程后再次运行dmoz爬虫

继续执行程序,会发现程序在前一次的基础之上继续往后执行,所以domz爬虫是一个基于url地址的增量式的爬虫

4. scrapy_redis的原理分析

我们从settings.py中的三个配置来进行分析

分别是:

RedisPipeline # 管道类

RFPDupeFilter # 指纹去重类

Scheduler # 调度器类

SCHEDULER_PERSIST # 是否持久化请求队列和指纹集合

4.1 Scrapy_redis之RedisPipeline

RedisPipeline中观察process_item,进行数据的保存,存入了redis中

4.2 Scrapy_redis之RFPDupeFilter

RFPDupeFilter 实现了对request对象的加密

4.3 Scrapy_redis之Scheduler

scrapy_redis调度器的实现了决定什么时候把request对象加入带抓取的队列,同时把请求过的request对象过滤掉

4.4 由此可以总结出request对象入队的条件

request的指纹不在集合中

request的dont_filter为True,即不过滤

start_urls中的url地址会入队,因为他们默认是不过滤

4.5 实现单机断点续爬

改写网易招聘爬虫,该爬虫就是一个经典的基于url地址的增量式爬虫

5. 实现分布式爬虫

5.1 分析demo中代码

打开example-project项目中的myspider_redis.py文件

from scrapy_redis.spiders import RedisSpider


class MySpider(RedisSpider):
    """Spider that reads urls from redis queue (myspider:start_urls)."""
    name = 'myspider_redis'
    redis_key = 'py21'

    def __init__(self, *args, **kwargs):
        # Dynamically define the allowed domains list.
        domain = kwargs.pop('domain', '')
        self.allowed_domains = filter(None, domain.split(','))
        super(MySpider, self).__init__(*args, **kwargs)

    def parse(self, response):
        return {
 
            'name': response.css('title::text').extract_first(),
            'url': response.url,
        }

settings.py中关键的配置

DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
SCHEDULER = "scrapy_redis.scheduler.Scheduler"
SCHEDULER_PERSIST = True

ITEM_PIPELINES = {
 
    'example.pipelines.ExamplePipeline': 300,
    'scrapy_redis.pipelines.RedisPipeline': 400,
}
REDIS_URL = "redis://127.0.0.1:6379"

打开3个窗口,分别运行

scrapy-redis\example-project\example\spiders  scrapy runspider myspider_redis.py

启用

lpush py21 http://www.badu.com

结果

开发步骤

1.继承自父类为RedisSpider

2.增加了一个redis_key的键,没有start_urls,因为分布式中,如果每台电脑都请求一次start_url就会重复

3.多了__init__方法,该方法不是必须的,可以手动指定allow_domains

4.启动方法:

在每个节点正确的目录下执行scrapy crawl 爬虫名,使该节点的scrapy_redis爬虫程序就位

在共用的redis中 lpush redis_key ‘start_url’,使全部节点真正的开始运行

5.settings.py中关键的配置

5.2 动手实现分布式爬虫步骤

三、爬取图书信息-邮乐网(https://ule.com)

1.全部商品分类-图书音像

首页

全部商品分类-图书/音像

计算机/网络

方案:涉及传参,使用spider爬虫

2.代码实现

A.创建项目

scrapy startproject ule

B.模型设计

class UleItem(scrapy.Item):
    # define the fields for your item here like:
    big_category = scrapy.Field()
    big_category_link = scrapy.Field()
    small_category = scrapy.Field()
    small_category_link = scrapy.Field()

    bookname = scrapy.Field()
    author = scrapy.Field()
    link = scrapy.Field()
    price = scrapy.Field()
    pass

C.创建爬虫

cd ule  scrapy genspider book ule.com

D.修改url:https://search.ule.com/

E.检查domain:ule.com

F.邮乐爬虫-大分类xpath

//*[@id=“fenlei10”]/div/div/div[1]/a
import scrapy


class BookSpider(scrapy.Spider):
    name = 'book'
    allowed_domains = ['ule.com']
    start_urls = ['https://search.ule.com/']

    def parse(self, response):
        # 获取所有图书大分类节点列表
        big_node_list = response.xpath('//*[@id="fenlei17"]/div/div/div[1]/a')

        for big_node in big_node_list:
            big_category = big_node.xpath('./text()').extract_first()
            big_category_link = response.urljoin(big_node.xpath('./@href').extract_first())
            print(big_category, big_category_link)

G.运行

scrapy crawl book

H.邮乐爬虫-获取小分类

根据大分类xpath获取小分类,上级兄弟节点div下a标签

//*[@id=“fenlei17”]/div[1]/div/div[1]/a/…/following-sibling::div[1]/a
# 获取所有图书小分类节点列表
small_node_list = big_node.xpath('../following-sibling::div[1]/a')
print(len(small_node_list))
break

I.模拟点击小分类链接

# 模拟点击小分类链接
yield scrapy.Request(
    url=temp['small_category_link'],
    callback=self.parse_book_list,
    meta={
 "py21": temp}
)

J.获取图书节点

//*[@id=“wrapper”]/div/div[5]/div[3]/div/ul/li/div
def parse_book_list(self, response):
    temp = response.meta['py21']

    book_list = response.xpath('//*[@id="wrapper"]/div/div[5]/div[3]/div/ul/li/div')
    print(len(book_list))

    for book in book_list:
        item = UleItem()

        # item['big_category'] = temp['big_category']
        # item['big_category_link'] = temp['big_category_link']
        # item['small_category'] = temp['small_category']
        # item['small_category_link'] = temp['small_category_link']

        item['bookname'] = book.xpath('./p[2]/a/text()').extract_first().strip()
        item['store'] = book.xpath('./p[2]/a/text()').extract_first().strip()
        item['link'] = response.urljoin(book.xpath('./p[1]/a[1]/@href').extract_first())
        # strong标签获取不到值
        # item['price'] = book.xpath('./div/span/strong/text()').extract_first()
        print(item)

运行效果

K.邮乐爬虫-图书价格

strong标签获取不到值,extract

通过分析可以从去详情的json获取

https://item-service.ule.com/itemserviceweb/api/v1/price/queryListingPrice?listId=3767119
# strong标签获取不到值,extract
# item['price'] = book.xpath('./div/span/strong').strip()

# 获取图书编号
skuid = book.xpath('./p[1]/a[2]/@data-listingid').extract_first()
# print("1111111111111111111111: ", skuid)

pri_url = 'https://item-service.ule.com/itemserviceweb/api/v1/price/queryListingPrice?listId=' + skuid
yield scrapy.Request(url=pri_url, callback=self.parse_price, meta={
 'meta_1': item})
# print(item)
def parse_price(self, response):
    item = response.meta['meta_1']

    dict_data = json.loads(response.body)
    # print("222222222: ", dict_data)
    item['price'] = dict_data['ulePrice']
    yield item

3.邮乐爬虫-修改为分布式爬虫

A.导入分布爬虫类

from scrapy_redis.spiders import RedisSpider

B.继承分布式爬虫类

class BookSpider(RedisSpider):

C.注销 allowed_domains和start_urls

#allowed_domains = [‘ule.com’]  #start_urls = [‘https://search.ule.com/’]

D.设置redis_key

redis_key = ‘py21’

E.设置__init__

def __init__(self, *args, **kwargs):
    domain = kwargs.pop('domain', '')
    self.allowed_domains = list(filter(None, domain.split(',')))
    super(BookSpider, self).__init__(*args, **kwargs)

D.修改settings

SPIDER_MODULES = ['ule.spiders']
NEWSPIDER_MODULE = 'ule.spiders'

USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.45 Safari/537.36'

# 设置重复过滤器的模块
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
# 设置调取器,scrap_redis中的调度器具备与数据库交互的功能
SCHEDULER = "scrapy_redis.scheduler.Scheduler"
# 设置当爬虫结束的时候是否保持redis数据库中的去重集合与任务队列
SCHEDULER_PERSIST = True
#SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderPriorityQueue"
#SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderQueue"
#SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderStack"

ITEM_PIPELINES = {
 
    # 'ule.pipelines.ExamplePipeline': 300,
    # 当开启该管道,该管道将会把数据存到Redis数据库中
    'scrapy_redis.pipelines.RedisPipeline': 400,
}
# 设置redis数据库
REDIS_URL = "redis://172.16.123.223:6379"

# LOG_LEVEL = 'DEBUG'

# Introduce an artifical delay to make use of parallelism. to speed up the
# crawl.
DOWNLOAD_DELAY = 1

运行:

cd ule\spiders  scrapy runspider book.py

测试:

lpush py21 https://search.ule.com/

+Redis +分布式系统 +Scrapy





相关推荐

一个基于.Net Core遵循Clean Architecture原则开源架构

今天给大家推荐一个遵循CleanArchitecture原则开源架构。项目简介这是基于Asp.netCore6开发的,遵循CleanArchitecture原则,可以高效、快速地构建基于Ra...

AI写代码翻车无数次,我发现只要提前做好这3步,bug立减80%

写十万行全是bug之后终于找到方法了开发"提示词管理助手"新版本那会儿,我差点被bug整崩溃。刚开始两周,全靠AI改代码架构,结果十万行程序漏洞百出。本来以为AI说没问题就稳了,结果...

OneCode低代码平台的事件驱动设计:架构解析与实践

引言:低代码平台的事件驱动范式在现代软件开发中,事件驱动架构(EDA)已成为构建灵活、松耦合系统的核心范式。OneCode低代码平台通过创新性的注解驱动设计,将事件驱动理念深度融入平台架构,实现了业务...

国内大厂AI插件评测:根据UI图生成Vue前端代码

在IDEA中安装大厂的AI插件,打开ruoyi增强项目:yudao-ui-admin-vue31.CodeBuddy插件登录腾讯的CodeBuddy后,大模型选择deepseek-v3,输入提示语:...

AI+低代码技术揭秘(二):核心架构

本文档介绍了为VTJ低代码平台提供支持的基本架构组件,包括Engine编排层、Provider服务系统、数据模型和代码生成管道。有关UI组件库和widget系统的信息,请参阅UI...

GitDiagram用AI把代码库变成可视化架构图

这是一个名为gitdiagram的开源工具,可将GitHub仓库实时转换为交互式架构图,帮助开发者快速理解代码结构。核心功能一键可视化:替换GitHubURL中的"hub...

30天自制操作系统:第六天:代码架构整理与中断处理

1.拆开bootpack.c文件。根据设计模式将对应的功能封装成独立的文件。2.初始化pic:pic(可编程中断控制器):在设计上,cpu单独只能处理一个中断。而pic是将8个中断信号集合成一个中断...

AI写代码越帮越忙?2025年研究揭露惊人真相

近年来,AI工具如雨后春笋般涌现,许多人开始幻想程序员的未来就是“对着AI说几句话”,就能轻松写出完美的代码。然而,2025年的一项最新研究却颠覆了这一期待,揭示了一个令人意外的结果。研究邀请了16位...

一键理解开源项目:两个自动生成GitHub代码架构图与说明书工具

一、GitDiagram可以一键生成github代码仓库的架构图如果想要可视化github开源项目:https://github.com/luler/reflex_ai_fast,也可以直接把域名替换...

5分钟掌握 c# 网络通讯架构及代码示例

以下是C#网络通讯架构的核心要点及代码示例,按协议类型分类整理:一、TCP协议(可靠连接)1.同步通信//服务器端usingSystem.Net.Sockets;usingTcpListene...

从复杂到优雅:用建造者和责任链重塑代码架构

引用设计模式是软件开发中的重要工具,它为解决常见问题提供了标准化的解决方案,提高了代码的可维护性和可扩展性,提升了开发效率,促进了团队协作,提高了软件质量,并帮助开发者更好地适应需求变化。通过学习和应...

低代码开发当道,我还需要学习LangChain这些框架吗?| IT杂谈

专注LLM深度应用,关注我不迷路前两天有位兄弟问了个问题:当然我很能理解这位朋友的担忧:期望效率最大化,时间用在刀刃上,“不要重新发明轮子”嘛。铺天盖地的AI信息轰炸与概念炒作,很容易让人浮躁与迷茫。...

框架设计并不是简单粗暴地写代码,而是要先弄清逻辑

3.框架设计3.框架设计本节我们要开发一个UI框架,底层以白鹭引擎为例。框架设计的第一步并不是直接撸代码,而是先想清楚设计思想,抽象。一个一个的UI窗口是独立的吗?不是的,...

大佬用 Avalonia 框架开发的 C# 代码 IDE

AvalonStudioAvalonStudio是一个开源的跨平台的开发编辑器(IDE),AvalonStudio的目标是成为一个功能齐全,并且可以让开发者快速使用的IDE,提高开发的生产力。A...

轻量级框架Lagent 仅需20行代码即可构建自己的智能代理

站长之家(ChinaZ.com)8月30日消息:Lagent是一个专注于基于LLM模型的代理开发的轻量级框架。它的设计旨在简化和提高这种模型下代理的开发效率。LLM模型是一种强大的工具,可以...

取消回复欢迎 发表评论: