自动化的机器学习:5个常用AutoML 框架介绍
ccwgpt 2024-10-01 08:25 43 浏览 0 评论
AutoML 可以为预测建模问题自动找到数据准备、模型和模型超参数的最佳组合,本文整理了5个最常见且被熟知的开源AutoML 框架。
AutoML框架执行的任务可以被总结成以下几点:
- 预处理和清理数据。
- 选择并构建适当的特征。
- 选择合适的模型。
- 优化模型超参数。
- 设计神经网络的拓扑结构(如果使用深度学习)。
- 机器学习模型后处理。
- 结果的可视化和展示。
在本文中,我们将介绍以下5 个开源 autoML 库或框架:
- Auto-Sklearn
- TPOT
- Hyperopt Sklearn
- Auto-Keras
- H2O AutoML
1、Auto-Sklearn
Auto-sklearn 是一个开箱即用的自动化机器学习库。 auto-sklearn 以 scikit-learn 为基础,自动搜索正确的学习算法并优化其超参数。 通过元学习、贝叶斯优化和集成学习等搜索可以获得最佳的数据处理管道和模型。它可以处理大部分繁琐的工作,例如预处理和特征工程技术: One-Hot 编码、特征归一化、降维等。
安装:
#pip
pip install auto-sklearn
#conda
conda install -c conda-forge auto-sklearn
因为进行了大量的封装,所以使用的方法sklearn基本一样,以下是样例代码:
import sklearn.datasets
import sklearn.metrics
import autosklearn.regression
import matplotlib.pyplot as plt
X, y = sklearn.datasets.load_diabetes(return_X_y=True)
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(X, y, random_state=1)
automl = autosklearn.regression.AutoSklearnRegressor(
time_left_for_this_task=120,
per_run_time_limit=30,
tmp_folder='/tmp/autosklearn_regression_example_tmp',
)
automl.fit(X_train, y_train, dataset_name='diabetes')
2、TPOT
TPOT(Tree-based Pipeline Optimization Tool)是一个 Python 自动化机器学习工具,它使用遗传算法优化对机器学习的流程进行优化。它也是基于 Scikit-Learn 提供的方法进行数据转换和机器学习模型的构建,但是它使用遗传算法编程进行随机和全局搜索。以下是TPOT 搜索流程:
安装:
#pip
pip insall tpot
#conda
conda install -c conda-forge tpot
样例代码:
from tpot import TPOTClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
import numpy as np
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data.astype(np.float64),
iris.target.astype(np.float64), train_size=0.75, test_size=0.25, random_state=42)
tpot = TPOTClassifier(generations=5, population_size=50, verbosity=2, random_state=42)
tpot.fit(X_train, y_train)
print(tpot.score(X_test, y_test))
tpot.export('tpot_iris_pipeline.py')
3、HyperOpt-Sklearn:
HyperOpt-Sklearn 是 HyperOpt 的包装器,可以将 AutoML 和 HyperOpt 与 Scikit-Learn 进行整合,这个库包含了数据预处理的转换和分类、回归算法模型。文档中介绍说:它专为具有数百个参数的模型进行大规模优化而设计 并允许跨多核和多台机器扩展优化过程。
安装:
pip install hyperopt
样例代码:
from pandas import read_csv
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error
from hpsklearn import HyperoptEstimator
from hpsklearn import any_regressor
from hpsklearn import any_preprocessing
from hyperopt import tpe
# load dataset
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data.astype(np.float64),
iris.target.astype(np.float64), train_size=0.75, test_size=0.25, random_state=42)
model = HyperoptEstimator(regressor=any_regressor('reg'), preprocessing=any_preprocessing('pre'), loss_fn=mean_absolute_error, algo=tpe.suggest, max_evals=50, trial_timeout=30)
model.fit(X_train, y_train)
# summarize performance
mae = model.score(X_test, y_test)
print("MAE: %.3f" % mae)
# summarize the best model
print(model.best_model())
4、AutoKeras
AutoKeras 是一个基于 Keras 的 AutoML 系统,只需几行代码就可以实现神经架构搜索(NAS)的强大功能。 它由德克萨斯 A&M 大学的 DATA 实验室开发,以 TensorFlow的tf.keras API 和Keras为基础进行实现 。
AutoKeras 可以支持不同的任务,例如图像分类、结构化数据分类或回归等。
安装:
pip install autokeras
样例代码:
import numpy as np
import tensorflow as tf
from tensorflow.keras.datasets import mnist
import autokeras as ak
#Load dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()
print(x_train.shape) # (60000, 28, 28)
print(y_train.shape) # (60000,)
print(y_train[:3]) # array([7, 2, 1], dtype=uint8)
# Initialize the image classifier.
clf = ak.ImageClassifier(overwrite=True, max_trials=1)
# Feed the image classifier with training data.
clf.fit(x_train, y_train, epochs=10)
# Predict with the best model.
predicted_y = clf.predict(x_test)
print(predicted_y)
# Evaluate the best model with testing data.
print(clf.evaluate(x_test, y_test))
5、H2O AutoML:
H2O 的 AutoML 可用于在用户指定的时间限制内自动训练和调整许多模型。
H2O 提供了许多适用于 AutoML 对象(模型组)以及单个模型的可解释性方法。 可以自动生成解释,并提供一个简单的界面来探索和解释 AutoML 模型。
安装:
pip insall h2o
H2O可以更详细的说是一个分布式的机器学习平台,所以就需要建立H2O的集群,这部分的代码是使用的java开发的,就需要安装jdk的支持。
在安装完成JAVA后,并且环境变量设置了java路径的情况下在cmd执行以下命令:
java -jar path_to/h2o.jar
就可以启动H2O的集群,就可以通过Web界面进行操作,如果想使用Python代码编写,可以使用以下示例
import h2o
h2o.init()
from h2o.automl import H2OAutoML
churn_df = h2o.import_file('https://raw.githubusercontent.com/srivatsan88/YouTubeLI/master/dataset/WA_Fn-UseC_-Telco-Customer-Churn.csv')
churn_df.types
churn_df.describe()
churn_train,churn_test,churn_valid = churn_df.split_frame(ratios=[.7, .15])
churn_train
y = "Churn"
x = churn_df.columns
x.remove(y)
x.remove("customerID")
aml = H2OAutoML(max_models = 10, seed = 10, exclude_algos = ["StackedEnsemble", "DeepLearning"], verbosity="info", nfolds=0)
!nvidia-smi
aml.train(x = x, y = y, training_frame = churn_train, validation_frame=churn_valid)
lb = aml.leaderboard
lb.head()
churn_pred=aml.leader.predict(churn_test)
churn_pred.head()
aml.leader.model_performance(churn_test)
model_ids = list(aml.leaderboard['model_id'].as_data_frame().iloc[:,0])
#se = h2o.get_model([mid for mid in model_ids if "StackedEnsemble_AllModels" in mid][0])
#metalearner = h2o.get_model(se.metalearner()['name'])
model_ids
h2o.get_model([mid for mid in model_ids if "XGBoost" in mid][0])
out = h2o.get_model([mid for mid in model_ids if "XGBoost" in mid][0])
out.params
out.convert_H2OXGBoostParams_2_XGBoostParams()
out
out_gbm = h2o.get_model([mid for mid in model_ids if "GBM" in mid][0])
out.confusion_matrix()
out.varimp_plot()
aml.leader.download_mojo(path = "./")
总结
在本文中,我们总结了 5 个 AutoML 库以及它如何检查机器学习进行任务的自动化,例如数据预处理、超参数调整、模型选择和评估。除了这5个常见的库以外还有一些其他 AutoML 库,例如 AutoGluon、MLBoX、TransmogrifAI、Auto -WEKA、AdaNet、MLjar、TransmogrifAI、Azure Machine Learning、Ludwig等。
作者:Abonia Sojasingarayar
相关推荐
- 用Steam启动Epic游戏会更快吗?(epic怎么用steam启动)
-
Epic商店很香,但也有不少抱怨,其中一条是启动游戏太慢。那么,如果让Steam启动Epic游戏,会不会速度更快?众所周知,Steam可以启动非Steam游戏,方法是在客户端左下方点击“添加游戏”,然...
- Docker看这一篇入门就够了(dockerl)
-
安装DockerLinux:$curl-fsSLhttps://get.docker.com-oget-docker.sh$sudoshget-docker.sh注意:如果安装了旧版...
- AYUI 炫丽PC开发UI框架2016年6月15日对外免费开发使用 [1]
-
2016年6月15日,我AY对外发布AYUI(WPF4.0开发)的UI框架,开发时候,你可以无任何影响的去开发PC电脑上的软件exe程序。AYUI兼容XP操作系统,在Win7/8/8.1/10上都顺利...
- 别再说C#/C++套壳方案多了!Tauri这“借壳生蛋”你可能没看懂!
-
浏览器套壳方案,C#和C++有更多,你说的没错,从数量和历史积淀来看,C#和C++确实有不少方式来套壳浏览器,让Web内容在桌面应用里跑起来。但咱们得把这套壳二字掰扯清楚,因为这里面学问可大了!不同的...
- OneCode 核心概念解析——Page(页面)
-
在接触到OneCode最先接触到的就是,Page页面,在低代码引擎中,页面(Page)设计的灵活性是平衡“快速开发”与“复杂需求适配”的关键。以下从架构设计、组件系统、配置能力等维度,解析确...
- React是最后的前端框架吗,为什么这么说的?
-
油管上有一位叫Theo的博主说,React是终极前端框架,为什么这么说呢?让我们来看看其逻辑:这个标题看起来像假的,对吧?React之后明明有无数新框架诞生,凭什么说它是最后一个?我说的“最后一个”不...
- 面试辅导(二):2025前端面试密码:用3个底层逻辑征服技术官
-
面试官放下简历,手指在桌上敲了三下:"你上次解决的技术难题,现在回头看有什么不足?"眼前的候选人瞬间僵住——这是上周真实发生在蚂蚁金服终面的场景。2025年的前端战场早已不是框架熟练...
- 前端新星崛起!Astro框架能否终结React的霸主地位?
-
引言:当"背着背包的全能选手"遇上"轻装上阵的短跑冠军"如果你是一名前端开发者,2024年的框架之争绝对让你眼花缭乱——一边是React这位"背着全家桶的全能选...
- 基于函数计算的 BFF 架构(基于函数计算的 bff 架构是什么)
-
什么是BFFBFF全称是BackendsForFrontends(服务于前端的后端),起源于2015年SamNewman一篇博客文章《Pattern:BackendsFor...
- 谷歌 Prompt Engineering 白皮书:2025年 AI 提示词工程的 10 个技巧
-
在AI技术飞速发展的当下,如何更高效地与大语言模型(LLM)沟通,以获取更准确、更有价值的输出,成为了一个备受关注的问题。谷歌最新发布的《PromptEngineering》白皮书,为这一问题提供了...
- 光的艺术:灯具创意设计(灯光艺术作品展示)
-
本文转自|艺术与设计微信号|artdesign_org_cn“光”是文明的起源,是思维的开端,同样也是人类睁眼的开始。每个人在出生一刻,便接受了光的照耀和洗礼。远古时候,人们将光奉为神明,用火来...
- MoE模型已成新风口,AI基础设施竞速升级
-
机器之心报道编辑:Panda因为基准测试成绩与实际表现相差较大,近期开源的Llama4系列模型正陷入争议的漩涡之中,但有一点却毫无疑问:MoE(混合专家)定然是未来AI大模型的主流范式之一。...
- Meta Spatial SDK重大改进:重塑Horizon OS应用开发格局
-
由文心大模型生成的文章摘要Meta持续深耕SpatialSDK技术生态,提供开自去年9月正式推出以来,Meta持续深耕其SpatialSDK技术生态,通过一系列重大迭代与功能增强,不断革新H...
- "上云"到底是个啥?用"租房"给你讲明白IaaS/PaaS/SaaS的区别
-
半夜三点被机房报警电话惊醒,顶着黑眼圈排查服务器故障——这是十年前互联网公司运维的日常。而现在,程序员小王正敷着面膜刷剧,因为公司的系统全"搬"到了云上。"部署到云上"...
- php宝塔搭建部署thinkphp机械设备响应式企业网站php源码
-
大家好啊,欢迎来到web测评。本期给大家带来一套php开发的机械设备响应式企业网站php源码,上次是谁要的系统项目啊,帮你找到了,还说不会搭建,让我帮忙录制一期教程,趁着今天有空,简单的录制测试了一下...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- 用Steam启动Epic游戏会更快吗?(epic怎么用steam启动)
- Docker看这一篇入门就够了(dockerl)
- AYUI 炫丽PC开发UI框架2016年6月15日对外免费开发使用 [1]
- 别再说C#/C++套壳方案多了!Tauri这“借壳生蛋”你可能没看懂!
- OneCode 核心概念解析——Page(页面)
- React是最后的前端框架吗,为什么这么说的?
- 面试辅导(二):2025前端面试密码:用3个底层逻辑征服技术官
- 前端新星崛起!Astro框架能否终结React的霸主地位?
- 基于函数计算的 BFF 架构(基于函数计算的 bff 架构是什么)
- 谷歌 Prompt Engineering 白皮书:2025年 AI 提示词工程的 10 个技巧
- 标签列表
-
- 框架图 (58)
- flask框架 (53)
- quartz框架 (51)
- abp框架 (47)
- jpa框架 (47)
- springmvc框架 (49)
- 分布式事务框架 (65)
- scrapy框架 (56)
- shiro框架 (61)
- 定时任务框架 (56)
- java日志框架 (61)
- JAVA集合框架 (47)
- mfc框架 (52)
- abb框架断路器 (48)
- ui自动化框架 (47)
- beego框架 (52)
- java框架spring (58)
- grpc框架 (55)
- ppt框架 (48)
- 内联框架 (52)
- cad怎么画框架 (58)
- ps怎么画框架 (47)
- ssm框架实现登录注册 (49)
- oracle字符串长度 (48)
- oracle提交事务 (47)