百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

开源微服务编排框架:Netflix Conductor

ccwgpt 2024-09-14 00:14 65 浏览 0 评论

本文主要介绍netflix conductor的基本概念和主要运行机制。

一 简介

netflix conductor是基于JAVA语言编写的开源流程引擎,用于架构基于微服务的流程。它具备如下特性:

  • 允许创建复杂的业务流程,流程中每个独立的任务都是由一个微服务所实现。
  • 基于JSON DSL 创建工作流,对任务的执行进行编排。
  • 工作流在执行的过程中可见、可追溯。
  • 提供暂停、恢复、重启等多种控制模型。
  • 提供一种简单的方式来最大限度重用微服务。
  • 拥有扩展到百万流程并发运行的服务能力。
  • 通过队列服务实现客户端与服务端的分离。
  • 支持 HTTP 或其他RPC协议进行数据传送

二 基本概念

1 Task

Task是最小执行单元,承载了一段执行逻辑,如发送HTTP请求等。

  • System Task:被conductor服务执行,这些任务的执行与引擎在同一个JVM中。
  • Worker Task:被worker服务执行,执行与引擎隔离开,worker通过队列获取任务后,执行并更新结果状态到引擎。Worker的实现是跨语言的,其使用Http协议与Server通信。

conductor提供了若干内置SystemTask:

  • 功能性Task:HTTP:发送http请求JSON_JQ_TRANSFORM:jq命令执行,一般用户json的转换,具体可见jq官方文档KAFKA_PUBLISH: 发布kafka消息
  • 流程控制Task:SWITCH(原Decision):条件判断分支,类似于代码中的switch caseFORK:启动并行分支,用于调度并行任务JOIN:汇总并行分支,用于汇总并行任务DO_WHILE:循环,类似于代码中的do whileWAIT:一直在运行中,直到外部时间触发更新节点状态,可用于等待外部操作SUB_WORKFLOW:子流程,执行其他的流程TERMINATE:结束流程,以指定输出提前结束流程,可以与SWITCH节点配合使用,类似代码中的提前return语句
  • 自定义Task:对于System Task,Conductor提供了WorkflowSystemTask 抽象类,可以自定义扩展实现。对于Worker Task,可以实现conductor的client Worker接口实现执行逻辑。

2 Workflow

  • Workflow由一系列需要执行的Task组成,conductor采用json来描述Task的流转关系。
  • 除基本的顺序流程外,借助内置的SWITCH、FORK、JOIN、DO_WIHLE、TERMINATE任务,还能实现分支、并行、循环、提前结束等流程控制。

3 Input&Output

Task的输入是一种映射,其作为工作流实例化的一部分或某些其他Task的输出。允许将来自工作流或其他Task的输入/输出作为随后执行的Task的输入。

  • Task有自己的输入和输出,输入输出都是jsonobject类型。
  • Task可以引用其他Task的输入输出,使用${taskxxx.output}的方式引用。引用语法为json-path,除最基础的${taskxxx.output}的值解析方式外,还支持其他复杂操作,如过滤等,具体见json-path语法。
  • 启动Workflow时可以传入流程的输入数据,Task可以通过${workflow.input}的方式引用。

Task实现原子操作的处理以及流程控制操作,Workflow定义描述Task的流转关系,Task引用Workflow或者其它Task的输入输出。通过这些机制,conductor实现了JSON DSL对流程的描述。

三 整体架构

主要分为几个部分:

  • Orchestrator: 负责流程的流转调度工作;
  • Management/Execution Service: 提供流程、任务的管理更新等操作;
  • TaskQueues: 任务队列,Orchestrator解析出来的待执行Task会放到队列中;
  • Worker: 任务执行worker,从TaskQueues中获取任务,通过Execution Service更新任务状态与结果数据;
  • Database: 元数据&运行时数据库,用于保存运行时的Workflow、Task等状态信息,以及流程任务定义的等原信息;
  • Index: 索引数据库,用于存储执行历史;

四 运行模型

1 Task状态转移

  • SCHEDULED:待调度,task放到队列中还没有被poll出来执行时的状态
  • IN_PROGRESS:执行中,被poll出来执行但还没有完成时的状态
  • COMPLETED:执行完成
  • FAILED:执行失败
  • CANCELLED:被中止时为此状态,一般出现在两种情况:手动中止流程时,正在运行中的task会被置为此状态;多个fork分支,当某个分支的task失败时,其它分支中正在运行的task会被置为此状态;

2 任务队列

任务的执行(同步的系统任务除外)都会先添加到任务队列中,是典型的生产者消费者模式。

  • 任务队列,是一个带有延迟、优先级功能的队列;
  • 每种类型的Task是一个单独的队列,此外,如果配置了domain、isolationGroup,还会拆分成多个队列实现执行隔离;
  • decider service是生产者,其根据流程配置与当前执行情况,解析出可执行的task后,添加到队列;
  • 任务执行器(SystemTaskWorker、Worker)是消费者,其长轮询对应的队列,从队列中获取任务执行;

队列接口可插拔,conductor提供了Dynomite 、MySQL、PostgreSQL的实现。

3 核心功能实现机制

conductor调度的核心是decider service,其根据当前流程运行的状态,解析出将要执行的任务列表,将任务入队交给worker执行。

decide主要流程简化如下,详细代码见WorkflowExecutor.java的decide方法:

其中,调度任务处理流程简化如下,详细代码见WorkflowExecutor.java的scheduleTask方法:

decide的触发时机

最主要的触发时机:

  1. 新启动执行时,会触发decide操作
  2. 系统任务执行完成时,会触发decide操作
  3. Workder任务通过ExecutionService更新任务状态时,会触发decide操作

流程控制节点的实现机制

1)Task & TaskMapper

对于每一个Task来说,都有Task和TaskMapper两部分:

  1. Task:任务的执行逻辑代码,它的作用是Task的执行
  2. TaskMapper:任务的映射逻辑代码,它通过Task的定义配置、当前实例的执行状态等信息,返回实际需要执行的Task列表

对于一般的任务来说,TaskMapper返回的是就是Task本身,补充一些执行实例的状态信息。但是对于控制节点来说,会有不同的逻辑。

2)条件分支(SWITCH)的实现机制

SWITCH用于根据条件判断,执行不同的分支。

实际上,该节点的Task不做任何操作,TaskMapper根据分支条件,判断出要走的分之后,返回对应分支的第一个Task。

SwitchTaskMapper.java getMappedTasks方法关键代码:

// 待调度的Task list,最终返回结果
List<Task> tasksToBeScheduled = new LinkedList<>();
// evalResult是分支条件变量的值(case)
// decisionCases是一个Map结构,key为分支的case值,value为对应分支的任务定义list(分支内的任务定义会有多个)
// 根据分支变量的实际值,获取对应分支的任务定义list
List<WorkflowTask> selectedTasks = taskToSchedule.getDecisionCases().get(evalResult);
// default的逻辑:如果获取不到对应的分支或者分支为空,则用默认的分支
if (selectedTasks == null || selectedTasks.isEmpty()) {
  selectedTasks = taskToSchedule.getDefaultCase();
}
if (selectedTasks != null && !selectedTasks.isEmpty()) {
  // 获取分支的第一个(下标0)task,返回给decider service去做调度(decider会把任务添加到队列里,交给worker去执行)
  WorkflowTask selectedTask = selectedTasks.get(0);
  // 调用了deciderService的getTasksToBeScheduled方法,此方法里又获取到TaskMapper调用了getMappedTasks。这里采用了递归调用的方式,解析嵌套的Task
  List<Task> caseTasks = taskMapperContext.getDeciderService()
    .getTasksToBeScheduled(workflowInstance, selectedTask, retryCount, taskMapperContext.getRetryTaskId());
  tasksToBeScheduled.addAll(caseTasks);
  switchTask.getInputData().put("hasChildren", "true");
}
return tasksToBeScheduled;

3)并行(FORK)的实现机制

FORK用于开启多个并行分支。

实际上,该节点的Task不做任何操作,TaskMapper返回所有并行分支的第一个Task。
ForkJoinTaskMapper.java getMappedTasks关键代码:

// 待调度的Task list,最终返回结果
List<Task> tasksToBeScheduled = new LinkedList<>();
// 配置中的所有fork分支
List<List<WorkflowTask>> forkTasks = taskToSchedule.getForkTasks();
for (List<WorkflowTask> wfts : forkTasks) {
  // 每个分支取第一个Task
  WorkflowTask wft = wfts.get(0);
  // 调用了deciderService的getTasksToBeScheduled方法,此方法里又获取到TaskMapper调用了getMappedTasks。这里采用了递归调用的方式,解析嵌套的Task
  List<Task> tasks2 = taskMapperContext.getDeciderService()
    .getTasksToBeScheduled(workflowInstance, wft, retryCount);
  tasksToBeScheduled.addAll(tasks2);
}
return tasksToBeScheduled;

总的来说,分支(SWITCH)、并行(FORK)节点本身没有执行逻辑,其通过TaskMapper返回到实际要执行的Task,然后交给Decider Service处理。

重试的实现机制

重试和其延迟时间设置,都是借助任务队列的功能实现的。

重试:将任务重新添加到任务队列

重试的延迟时间:添加到任务队列时设置延迟时间,延迟时间过后,任务才能在队列中被poll出来执行

五 完整性保障机制

由于调度过程中可能会出现因机器重启、网络异常、JVM崩溃等偶发情况,这些会导致的decide过程意外终止,流程执行不完整,展现出如流程一直运行中(实际已经没有在调度),或者其它状态错误等异常现象。

1 WorkflowReconciler

针对这种情况,conductor有一个WorkflowReconciler,会定期尝试decide所有正在运行中的流程,修复流程执行的一致性。此外,它还有一个作用是校验流程超时时间。

2 decideQueue

那么WorkflowReconciler是如何获取到当前运行中的流程呢,答案是decideQueue。
decideQueue和任务队列相同,也是一个具有延迟功能的队列,其存放的是正在执行中的流程的实例id。在任务开始执行时(包括新启动执行、重试执行、恢复执行、重跑执行等),会将实例id push到decideQueue中;在执行结束(成功、失败)时,会从decideQueue中删除实例id。

3 ExecutionLockService

WorkflowReconciler会定期尝试decide所有正在运行中的流程用于超时判断、维护流程一致性。但是流程本身正常执行也会触发decide,如果同一个执行同时触发两个decide,可能会导致状态混乱,执行卡住等问题。

conductor采用了锁来解决这个问题,其提供了单机LocalOnlyLock(基于信号量实现)、redis分布式锁(基于redission实现)、zookeeper分布式锁三种实现。

decide方法中最开始会尝试获取锁,如果获取失败则直接返回。通过锁来保障不会对同一个流程实例并发执行decide。

if (!executionLockService.acquireLock(workflowId)) {
  return false;
}

由于锁是可配置的,可能会导致一个误区:单台机器的话不用配置锁。其实单机也是需要配置锁的,因为WorkflowReconciler和流程正常执行会产生冲突,可能会导致偶发的流程状态混乱问题。

参考:
Github: https://github.com/Netflix/conductor
官方文档:https://netflix.github.io/conductor/
WorkflowReconciler:https://github.com/Netflix/conductor/blob/main/core/src/main/java/com/netflix/conductor/core/reconciliation/WorkflowReconciler.java
WorkflowSystemTask:https://github.com/Netflix/conductor/blob/main/core/src/main/java/com/netflix/conductor/core/execution/tasks/WorkflowSystemTask.java?spm=ata.21736010.0.0.2b501a3cYnrSfT&file=WorkflowSystemTask.java

作者 | 夜阳

原文链接:https://developer.aliyun.com/article/818136?utm_content=g_1000311143

本文为阿里云原创内容,未经允许不得转载。

相关推荐

十分钟让你学会LNMP架构负载均衡(impala负载均衡)

业务架构、应用架构、数据架构和技术架构一、几个基本概念1、pv值pv值(pageviews):页面的浏览量概念:一个网站的所有页面,在一天内,被浏览的总次数。(大型网站通常是上千万的级别)2、u...

AGV仓储机器人调度系统架构(agv物流机器人)

系统架构层次划分采用分层模块化设计,分为以下五层:1.1用户接口层功能:提供人机交互界面(Web/桌面端),支持任务下发、实时监控、数据可视化和报警管理。模块:任务管理面板:接收订单(如拣货、...

远程热部署在美团的落地实践(远程热点是什么意思)

Sonic是美团内部研发设计的一款用于热部署的IDEA插件,本文其实现原理及落地的一些技术细节。在阅读本文之前,建议大家先熟悉一下Spring源码、SpringMVC源码、SpringBoot...

springboot搭建xxl-job(分布式任务调度系统)

一、部署xxl-job服务端下载xxl-job源码:https://gitee.com/xuxueli0323/xxl-job二、导入项目、创建xxl_job数据库、修改配置文件为自己的数据库三、启动...

大模型:使用vLLM和Ray分布式部署推理应用

一、vLLM:面向大模型的高效推理框架1.核心特点专为推理优化:专注于大模型(如GPT-3、LLaMA)的高吞吐量、低延迟推理。关键技术:PagedAttention:类似操作系统内存分页管理,将K...

国产开源之光【分布式工作流调度系统】:DolphinScheduler

DolphinScheduler是一个开源的分布式工作流调度系统,旨在帮助用户以可靠、高效和可扩展的方式管理和调度大规模的数据处理工作流。它支持以图形化方式定义和管理工作流,提供了丰富的调度功能和监控...

简单可靠高效的分布式任务队列系统

#记录我的2024#大家好,又见面了,我是GitHub精选君!背景介绍在系统访问量逐渐增大,高并发、分布式系统成为了企业技术架构升级的必由之路。在这样的背景下,异步任务队列扮演着至关重要的角色,...

虚拟服务器之间如何分布式运行?(虚拟服务器部署)

  在云计算和虚拟化技术快速发展的今天,传统“单机单任务”的服务器架构早已难以满足现代业务对高并发、高可用、弹性伸缩和容错容灾的严苛要求。分布式系统应运而生,并成为支撑各类互联网平台、企业信息系统和A...

一文掌握 XXL-Job 的 6 大核心组件

XXL-Job是一个分布式任务调度平台,其核心组件主要包括以下部分,各组件相互协作实现高效的任务调度与管理:1.调度注册中心(RegistryCenter)作用:负责管理调度器(Schedule...

京东大佬问我,SpringBoot中如何做延迟队列?单机与分布式如何做?

京东大佬问我,SpringBoot中如何做延迟队列?单机如何做?分布式如何做呢?并给出案例与代码分析。嗯,用户问的是在SpringBoot中如何实现延迟队列,单机和分布式环境下分别怎么做。这个问题其实...

企业级项目组件选型(一)分布式任务调度平台

官网地址:https://www.xuxueli.com/xxl-job/能力介绍架构图安全性为提升系统安全性,调度中心和执行器进行安全性校验,双方AccessToken匹配才允许通讯;调度中心和执...

python多进程的分布式任务调度应用场景及示例

多进程的分布式任务调度可以应用于以下场景:分布式爬虫:importmultiprocessingimportrequestsdefcrawl(url):response=re...

SpringBoot整合ElasticJob实现分布式任务调度

介绍ElasticJob是面向互联网生态和海量任务的分布式调度解决方案,由两个相互独立的子项目ElasticJob-Lite和ElasticJob-Cloud组成。它通过弹性调度、资源管控、...

分布式可视化 DAG 任务调度系统 Taier 的整体流程分析

Taier作为袋鼠云的开源项目之一,是一个分布式可视化的DAG任务调度系统。旨在降低ETL开发成本,提高大数据平台稳定性,让大数据开发人员可以在Taier直接进行业务逻辑的开发,而不用关...

SpringBoot任务调度:@Scheduled与TaskExecutor全面解析

一、任务调度基础概念1.1什么是任务调度任务调度是指按照预定的时间计划或特定条件自动执行任务的过程。在现代应用开发中,任务调度扮演着至关重要的角色,它使得开发者能够自动化处理周期性任务、定时任务和异...

取消回复欢迎 发表评论: