百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

Pony - 最智能的 Python ORM 框架

ccwgpt 2024-10-16 08:00 27 浏览 0 评论

在代码里手写 SQL 并不是一件愉快的事情,故而,代码中往往使用 ORM,把代码中定义的数据模型、查询和数据操作转换为 SQL 语言来操作数据库。不同的 ORM,对于数据库操作的抽象程度也有所不同,抽象程度更高的 ORM,往往能够写出更为贴合编程语言的数据操作代码,且对 SQL 的转换有更为智能的处理,隐去更多无需关注的底层细节,使代码变得更为优雅,提高开发效率。Pony,就是一个具有高抽象程度的 Python 语言的 ORM 框架,其优雅的语法,甚至支持使用 Python 中的列表推导式进行数据库查询。

简介

Pony,是 ponyorm 在 Github 上开源的 Python ORM 框架,项目位于 https://github.com/ponyorm/pony,目前版本为 0.7.13。Pony 提供了十分 Pythonic 的 API,易于学习,使用方便。Pony 提供了基于实体的数据模型定义,精简的查询语法,全面的报错信息,并能输出可读性强的生成的 SQL 语句。这些大大提升了开发效率,使得使用 Python 语言进行数据库操作更为方便。相比于已有的 Django 和 SQLAlchemy 等 ORM,Pony 提供了 IdentityMap 模式,自动的事务管理,自动的查询和数据缓存,以及对于高级 SQL 语法的支持等。


安装

Pony 支持 Python 2.7 和 Python 3,可以使用 pip 安装:

pip install pony

Pony 目前支持的数据库包括 SQLite、PostgreSQL、MySQL、Oracle CockroachDB。当使用 SQLite 时,无需额外的依赖,而使用其他的数据库,需要安装对应的驱动。


示例

Pony 使用十分简单。首先,需要实例化数据库,连接到对应的数据库后端:

from pony.orm import *
db = Database("sqlite", "estore.sqlite", create_db=True)

使用 create_db 参数进行数据库创建。也可以先创建一个数据库实例,之后再进行绑定:

db = Database()
db.bind(provider='sqlite', filename='database.sqlite', create_db=True)

Pony 使用实体关系模型作为数据模型:

class Person(db.Entity):
    name = Required(str)
    age = Required(int)
    cars = Set('Car')

class Car(db.Entity):
    make = Required(str)
    model = Required(str)
    owner = Required(Person)

对于数据模型 Person,定义了3个属性:name,一个非空的字符串;age,一个非空的整数;cars,一个数据关系,是一个指向实体 Car 的集合,表示这个人所拥有的车辆集合。相似地,在实体 Car 中,定义了属性 owner,指向 Person,表示车辆对应的拥有者。通过这两个关系,我们就实现了 Person 和 Car 之间一对多的数据关系。Pony 还提供了一个方便的工具函数 show,用来打印实体的定义:

>>> show(Person)
class Person(Entity):
    id = PrimaryKey(int, auto=True)
    name = Required(str)
    age = Required(int)
    cars = Set(Car)

注意到,Person 比代码中的定义多了一个 id 属性,这是因为我们没有定义主键,故而 Pony 自动添加了一个 id 主键。

在定义了数据实体后,我们需要把它们映射到数据库的数据表:

db.generate_mapping(create_tables=True)

使用 create_tables 参数,当表不存在时自动创建。

在完成了数据模型的定义后,就可以进行数据实例的创建:

>>> p1 = Person(name='John', age=20)
>>> p2 = Person(name='Mary', age=22)
>>> p3 = Person(name='Bob', age=30)
>>> c1 = Car(make='Toyota', model='Prius', owner=p2)
>>> c2 = Car(make='Ford', model='Explorer', owner=p3)
>>> commit()

在调用 commit 后,会产生 SQL 的 INSERT 语句,把所有数据实例插入到数据库中。也可以使用 db_session 上下文,对 session 进行自动管理:

with db_session:
    p = Person(name='Kate', age=33)
    Car(make='Audi', model='R8', owner=p)

Pony 提供了十分优雅的查询方式,可以使用 Python 的生成器表达式和 lambda 函数进行数据库查询。我们来看一个基本例子:

>>> select(p for p in Person if p.age > 20)
<pony.orm.core.Query at 0x105e74d10>

这里,使用了 Pony 的 select 接口,对数据库进行查询,查询所有年龄大于20岁的人的记录,返回一个 Query 对象。想要得到数据列表,我们支持使用列表的范围切片语法:

>>> select(p for p in Person if p.age > 20)[:]

SELECT "p"."id", "p"."name", "p"."age"
FROM "Person" "p"
WHERE "p"."age" > 20

[Person[2], Person[3]]

可以看到,Pony 把一个列表推导形式的 Python 语句,转换为了对应的 SQL 查询语句,返回了符合条件的数据列表。相比于使用 where 函数等其他 ORM 采用的查询方式,Pony 的查询语法真正做到了 Pythonic,使得操作数据库表时仿佛在操作原生的 Python 列表。 Pony 还提供了聚合查询:

>>> print max(p.age for p in Person)
SELECT MAX("p"."age")
FROM "Person" "p"

30

使用 max 函数,就直接实现了对 Person.age 进行最大值的聚合查询。

>>> select((p, count(p.cars)) for p in Person)[:]

SELECT "p"."id", COUNT(DISTINCT "car-1"."id")
FROM "Person" "p"
  LEFT JOIN "Car" "car-1"
    ON "p"."id" = "car-1"."owner"
GROUP BY "p"."id"

[(Person[1], 0), (Person[2], 1), (Person[3], 1)]

代码语义十分清晰,查询所有的人,和每人所拥有的车辆数。这条看似简单的逻辑,翻译成 SQL,就会涉及到 Person 和 Car 模型的 join,以及对于 Person 的 group_by,还有计数的聚合查询和去重问题,可以看到,转换得到的 SQL 语句共5行涉及了众多的 SQL 语法和概念。Pony 使用一行语义清晰的 Python 代码,就实现了一个较为复杂的 SQL 查询,令人印象深刻。

另外,排序可以使用 Query 提供的 order_by 实现:

>>> select(p for p in Person).order_by(Person.name)[:2]

SELECT "p"."id", "p"."name", "p"."age"
FROM "Person" "p"
ORDER BY "p"."name"
LIMIT 2

[Person[3], Person[1]]

这里还使用了 [:2] 的语法,实现了 SQL 中的 LIMIT 语法。

如果你更喜欢使用 lambda 函数,Pony 也提供了 lambda 函数的数据查询方式:

product_list = Product.select(lambda p: p.price > 100)[:]

Pony 还提供了自动的去重查询。当进行数据的单个属性的查询时,我们往往希望查询的是所有出现的值的集合。Pony 会自动判断当前查询的语义,进行 DISTINCT 去重的添加。例如,想要查询所有人的名字:

select(p.name for p in Person)

在这里,查询语句只查询名字这一个属性,意味着我们想要得到的是所有名字的集合,而对于重名的情况并不关心,Pony 就会自动添加 DISTINCT:

SELECT DISTINCT "p"."name"
FROM "Person" "p"

对于使用主键查询数据实例,Pony 使用了极为简洁的方括号语法:

customer1 = Customer[123]

对于符合主键的模型,这个语法也是可以工作的:

order_item = OrderItem[order1, product1]

对于数据的修改和删除也是十分简单的:

Product[123].quantity += 10
Order[123].delete()

也提供了批量更新和修改:

update(p.set(price=price * 1.1) for p in Product
       if p.category.name == "T-Shirt")
delete(p for p in Product if p.category.name == 'SD Card')



总结

作为一个 Python 语言的 ORM 框架,以其优雅的接口语法,和智能的自动化处理能力,成为了其他 ORM 框架的有力竞争,值得开发者们进行使用,有兴趣的话还可以对其实现源码进行学习研究,进行开源贡献。

相关推荐

团队管理“布阵术”:3招让你的团队战斗力爆表!

为何古代军队能够以一当十?为何现代企业有的团队高效似“特种部队”,有的却松散若“游击队”?**答案正隐匿于“布阵术”之中!**今时今日,让我们从古代兵法里萃取3个核心要义,助您塑造一支战斗力爆棚的...

知情人士回应字节大模型团队架构调整

【知情人士回应字节大模型团队架构调整】财联社2月21日电,针对原谷歌DeepMind副总裁吴永辉加入字节跳动后引发的团队调整问题,知情人士回应称:吴永辉博士主要负责AI基础研究探索工作,偏基础研究;A...

豆包大模型团队开源RLHF框架,训练吞吐量最高提升20倍

强化学习(RL)对大模型复杂推理能力提升有关键作用,但其复杂的计算流程对训练和部署也带来了巨大挑战。近日,字节跳动豆包大模型团队与香港大学联合提出HybridFlow。这是一个灵活高效的RL/RL...

创业团队如何设计股权架构及分配(创业团队如何设计股权架构及分配方案)

创业团队的股权架构设计,决定了公司在随后发展中呈现出的股权布局。如果最初的股权架构就存在先天不足,公司就很难顺利、稳定地成长起来。因此,创业之初,对股权设计应慎之又慎,避免留下巨大隐患和风险。两个人如...

消息称吴永辉入职后引发字节大模型团队架构大调整

2月21日,有消息称前谷歌大佬吴永辉加入字节跳动,并担任大模型团队Seed基础研究负责人后,引发了字节跳动大模型团队架构大调整。多名原本向朱文佳汇报的算法和技术负责人开始转向吴永辉汇报。简单来说,就是...

31页组织效能提升模型,经营管理团队搭建框架与权责定位

分享职场干货,提升能力!为职场精英打造个人知识体系,升职加薪!31页组织效能提升模型如何拿到分享的源文件:请您关注本头条号,然后私信本头条号“文米”2个字,按照操作流程,专人负责发送源文件给您。...

异形柱结构(异形柱结构技术规程)

下列关于混凝土异形柱结构设计的说法,其中何项正确?(A)混凝土异形柱框架结构可用于所有非抗震和抗震设防地区的一般居住建筑。(B)抗震设防烈度为6度时,对标准设防类(丙类)采用异形柱结构的建筑可不进行地...

职场干货:金字塔原理(金字塔原理实战篇)

金字塔原理的适用范围:金字塔原理适用于所有需要构建清晰逻辑框架的文章。第一篇:表达的逻辑。如何利用金字塔原理构建基本的金字塔结构受众(包括读者、听众、观众或学员)最容易理解的顺序:先了解主要的、抽象的...

底部剪力法(底部剪力法的基本原理)

某四层钢筋混凝土框架结构,计算简图如图1所示。抗震设防类别为丙类,抗震设防烈度为8度(0.2g),Ⅱ类场地,设计地震分组为第一组,第一自振周期T1=0.55s。一至四层的楼层侧向刚度依次为:K1=1...

结构等效重力荷载代表值(等效重力荷载系数)

某五层钢筋混凝土框架结构办公楼,房屋高度25.45m。抗震设防烈度8度,设防类别丙类,设计基本地震加速度0.2g,设计地震分组第二组,场地类别为Ⅱ类,混凝土强度等级C30。该结构平面和竖向均规则。假定...

体系结构已成昭告后世善莫大焉(体系构架是什么意思)

实践先行也理论已初步完成框架结构留余后人后世子孙俗话说前人栽树后人乘凉在夏商周大明大清民国共和前人栽树下吾之辈已完成结构体系又俗话说青出于蓝而胜于蓝各个时期任务不同吾辈探索框架结构体系经历有限肯定发展...

框架柱抗震构造要求(框架柱抗震设计)

某现浇钢筋混凝土框架-剪力墙结构高层办公楼,抗震设防烈度为8度(0.2g),场地类别为Ⅱ类,抗震等级:框架二级,剪力墙一级,混凝土强度等级:框架柱及剪力墙C50,框架梁及楼板C35,纵向钢筋及箍筋均采...

梁的刚度、挠度控制(钢梁挠度过大会引起什么原因)

某办公楼为现浇钢筋混凝土框架结构,r0=1.0,混凝土强度等级C35,纵向钢筋采用HRB400,箍筋采用HPB300。其二层(中间楼层)的局部平面图和次梁L-1的计算简图如图1~3(Z)所示,其中,K...

死要面子!有钱做大玻璃窗,却没有钱做“柱和梁”,不怕房塌吗?

活久见,有钱做2层落地大玻璃窗,却没有钱做“柱子和圈梁”,这样的农村自建房,安全吗?最近刷到个魔幻施工现场,如下图,这栋5开间的农村自建房,居然做了2个全景落地窗仔细观察,这2个落地窗还是飘窗,为了追...

不是承重墙,物业也不让拆?话说装修就一定要拆墙才行么

最近发现好多朋友装修时总想拆墙“爆改”空间,别以为只要避开承重墙就能随便砸!我家楼上邻居去年装修,拆了阳台矮墙想扩客厅,结果物业直接上门叫停。后来才知道,这种配重墙拆了会让阳台承重失衡,整栋楼都可能变...

取消回复欢迎 发表评论: