百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

小型深度学习框架 | TinyGrad,不到1K行代码(附代码下载)

ccwgpt 2024-10-19 03:11 36 浏览 0 评论

欢迎关注“
计算机视觉研究院

计算机视觉研究院专栏
作者:计算机视觉研究院



最近,天才黑客 George Hotz 开源了一个小型深度学习框架 tinygrad,兼具 PyTorch micrograd 的功能。tinygrad 的代码数量不到 1000 行,目前该项目获得了 GitHub 1400 星。

在深度学习时代,谷歌、Facebook、百度等科技巨头开源了多款框架来帮助开发者更轻松地学习、构建和训练不同类型的神经网络。而这些大公司也花费了很大的精力来维护 TensorFlowPyTorch 这样庞大的深度学习框架。除了这类主流框架之外,开发者们也会开源一些小而精的框架或者库。比如今年 4 月份,特斯拉人工智能部门主管 Andrej Karpathy 开源了其编写的微型 autograd 引擎 micrograd,该引擎还用 50 行代码实现了一个类 PyTorch api 的神经网络库。目前,micrograd 项目的 GitHub star 量达到 1200 星。不久前,天才黑客 George Hotz(乔治 · 霍兹)开源了一个小型 Autograd Tensor tinygrad,它介于 PyTorch micrograd 之间,能够满足做深度学习的大部分要求。上线不到一个月,该项目在 GitHub 上已经获得 1400 星。


根据 GitHub 内容,下文对 tinygrad 的安装与使用做了简要介绍。感兴趣的同学也可通过 George Hotz 的 YouTube 视频进行学习。

视频地址:https://www.youtube.com/channel/UCwgKmJM4ZJQRJ-U5NjvR2dg


tinygrad 的安装与使用


「tinygrad 可能不是最好的深度学习框架,但它确实是深度学习框架。」


George 在项目中保证,tinygrad 代码量会永远小于 1000 行。

安装

tinygrad 的安装过程非常简单,只需使用以下命令:
pip3 install tinygrad --upgrade

示例

安装好 tinygrad 之后,就可以进行示例运行,代码如下:
from tinygrad.tensor import Tensor
x = Tensor.eye(3)y = Tensor([[2.0,0,-2.0]])z = y.matmul(x).sum()z.backward()
print(x.grad) # dz/dxprint(y.grad) # dz/dy


使用 torch 的代码如下:

import torch
x = torch.eye(3, requires_grad=True)y = torch.tensor([[2.0,0,-2.0]], requires_grad=True)z = y.matmul(x).sum()z.backward()
print(x.grad) # dz/dxprint(y.grad) # dz/dy


满足对神经网络的需求


一个不错的autograd张量库可以满足你对神经网络 90%的需求。从 tinygrad.optim 添加优化器(SGD、RMSprop、Adam),再编写一些 minibatching 样板代码,就可以实现你的需求。

示例如下:

from tinygrad.tensor import Tensorimport tinygrad.optim as optimfrom tinygrad.utils import layer_init_uniform
class TinyBobNet: def __init__(self): self.l1 = Tensor(layer_init_uniform(784, 128)) self.l2 = Tensor(layer_init_uniform(128, 10))
def forward(self, x): return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
model = TinyBobNet()optim = optim.SGD([model.l1, model.l2], lr=0.001)
# ... and complete like pytorch, with (x,y) data
out = model.forward(x)loss = out.mul(y).mean()loss.backward()optim.step()


支持 GPU
tinygrad 通过 PyOpenCL 支持 GPU。但后向传播暂时无法支持所有 ops。
from tinygrad.tensor import Tensor(Tensor.ones(4,4).cuda() + Tensor.ones(4,4).cuda()).cpu()


ImageNet inference

「麻雀虽小,五脏俱全。」tinygrad 还能够支持 full EfficientNet,输入一张图像,即可得到其类别。
ipython3 examples/efficientnet.py https://upload.wikimedia.org/wikipedia/commons/4/41/Chicken.jpg

如果你安装了 webcam 和 cv2,则可以使用以下代码:

ipython3 examples/efficientnet.py webcam
注意:如果你想加速运行,设置 GPU=1。

测试

运行以下代码可执行测试:
python -m pytest

此外,乔治 · 霍兹还计划添加语言模型、检测模型,进一步减少代码量、提升速度等。

TODO

  • Train an EfficientNet on ImageNet

    • Make broadcasting work on the backward pass (simple please)

    • EfficientNet backward pass

    • Tensors on GPU (a few more backward)

  • Add a language model. BERT?

  • Add a detection model. EfficientDet?

  • Reduce code

  • Increase speed

  • Add features

/End.


如果想加入我们“计算机视觉研究院”,请扫二维码加入我们。我们会按照你的需求将你拉入对应的学习群!
计算机视觉研究院主要涉及深度学习领域,主要致力于人脸检测、人脸识别,多目标检测、目标跟踪、图像分割等研究方向。研究院接下来会不断分享最新的论文算法新框架,我们这次改革不同点就是,我们要着重”研究“。之后我们会针对相应领域分享实践过程,让大家真正体会摆脱理论的真实场景,培养爱动手编程爱动脑思考的习惯!

后台回复“TinyGrad

计算机视觉研究院

相关推荐

一个基于.Net Core遵循Clean Architecture原则开源架构

今天给大家推荐一个遵循CleanArchitecture原则开源架构。项目简介这是基于Asp.netCore6开发的,遵循CleanArchitecture原则,可以高效、快速地构建基于Ra...

AI写代码翻车无数次,我发现只要提前做好这3步,bug立减80%

写十万行全是bug之后终于找到方法了开发"提示词管理助手"新版本那会儿,我差点被bug整崩溃。刚开始两周,全靠AI改代码架构,结果十万行程序漏洞百出。本来以为AI说没问题就稳了,结果...

OneCode低代码平台的事件驱动设计:架构解析与实践

引言:低代码平台的事件驱动范式在现代软件开发中,事件驱动架构(EDA)已成为构建灵活、松耦合系统的核心范式。OneCode低代码平台通过创新性的注解驱动设计,将事件驱动理念深度融入平台架构,实现了业务...

国内大厂AI插件评测:根据UI图生成Vue前端代码

在IDEA中安装大厂的AI插件,打开ruoyi增强项目:yudao-ui-admin-vue31.CodeBuddy插件登录腾讯的CodeBuddy后,大模型选择deepseek-v3,输入提示语:...

AI+低代码技术揭秘(二):核心架构

本文档介绍了为VTJ低代码平台提供支持的基本架构组件,包括Engine编排层、Provider服务系统、数据模型和代码生成管道。有关UI组件库和widget系统的信息,请参阅UI...

GitDiagram用AI把代码库变成可视化架构图

这是一个名为gitdiagram的开源工具,可将GitHub仓库实时转换为交互式架构图,帮助开发者快速理解代码结构。核心功能一键可视化:替换GitHubURL中的"hub...

30天自制操作系统:第六天:代码架构整理与中断处理

1.拆开bootpack.c文件。根据设计模式将对应的功能封装成独立的文件。2.初始化pic:pic(可编程中断控制器):在设计上,cpu单独只能处理一个中断。而pic是将8个中断信号集合成一个中断...

AI写代码越帮越忙?2025年研究揭露惊人真相

近年来,AI工具如雨后春笋般涌现,许多人开始幻想程序员的未来就是“对着AI说几句话”,就能轻松写出完美的代码。然而,2025年的一项最新研究却颠覆了这一期待,揭示了一个令人意外的结果。研究邀请了16位...

一键理解开源项目:两个自动生成GitHub代码架构图与说明书工具

一、GitDiagram可以一键生成github代码仓库的架构图如果想要可视化github开源项目:https://github.com/luler/reflex_ai_fast,也可以直接把域名替换...

5分钟掌握 c# 网络通讯架构及代码示例

以下是C#网络通讯架构的核心要点及代码示例,按协议类型分类整理:一、TCP协议(可靠连接)1.同步通信//服务器端usingSystem.Net.Sockets;usingTcpListene...

从复杂到优雅:用建造者和责任链重塑代码架构

引用设计模式是软件开发中的重要工具,它为解决常见问题提供了标准化的解决方案,提高了代码的可维护性和可扩展性,提升了开发效率,促进了团队协作,提高了软件质量,并帮助开发者更好地适应需求变化。通过学习和应...

低代码开发当道,我还需要学习LangChain这些框架吗?| IT杂谈

专注LLM深度应用,关注我不迷路前两天有位兄弟问了个问题:当然我很能理解这位朋友的担忧:期望效率最大化,时间用在刀刃上,“不要重新发明轮子”嘛。铺天盖地的AI信息轰炸与概念炒作,很容易让人浮躁与迷茫。...

框架设计并不是简单粗暴地写代码,而是要先弄清逻辑

3.框架设计3.框架设计本节我们要开发一个UI框架,底层以白鹭引擎为例。框架设计的第一步并不是直接撸代码,而是先想清楚设计思想,抽象。一个一个的UI窗口是独立的吗?不是的,...

大佬用 Avalonia 框架开发的 C# 代码 IDE

AvalonStudioAvalonStudio是一个开源的跨平台的开发编辑器(IDE),AvalonStudio的目标是成为一个功能齐全,并且可以让开发者快速使用的IDE,提高开发的生产力。A...

轻量级框架Lagent 仅需20行代码即可构建自己的智能代理

站长之家(ChinaZ.com)8月30日消息:Lagent是一个专注于基于LLM模型的代理开发的轻量级框架。它的设计旨在简化和提高这种模型下代理的开发效率。LLM模型是一种强大的工具,可以...

取消回复欢迎 发表评论: