一万元搭建深度学习系统:硬件、软件安装教程,以及性能测试
ccwgpt 2024-10-28 15:00 28 浏览 0 评论
作者:Slav Ivanov@blog.slavv.com
问耕 编译整理
量子位 出品 | 公众号 QbitAI
Macbook这种轻薄的笔记本,是搞不了深度学习的。亚马逊P2云服务,会给堆积越来越多的账单,换个便宜的服务,训练时间又太长……
没办法,已经十多年没用过台式机的我,只能重新着手DIY装机,搭建一套自己的深度学习系统。以下是我的系统搭建和测试过程。
硬件清单
之前,我在AWS亚马逊云服务上的花费是每月70美元(约480元人民币)。按照使用两年计算,我给这套系统的总预算是1700美元(约11650元)。
GPU
肯定得买Nvidia,没有其他选择。买两块还是一块?我想了想,还是先买一个性能更好的,以后有钱了再增加。综合显存、带宽等因素,我最终选了GTX 1080 Ti,跟Titan X相比,性能差不了多少,但价格便宜不少。
CPU
虽然比不上GPU,但CPU也很重要。从预算出发,我选了一颗中端产品英特尔i5 7500。相对便宜,但不会拖慢整个系统。
内存
两条16GB容量的内存,总共是32GB。
硬盘
两块。
一块SSD硬盘运行操作系统和当前数据,我选的是MyDigitalSSD NVMe 480GB。一块速度较慢的2TB容量HDD硬盘存储大的数据集(例如ImageNet)。
主板
为了以后的拓展,我得选能支持两块GTX 1080 Ti的主板。最后的选择是:华硕TUF Z270。
电源
得为GPU何GPU们提供足够的电力供应。英特尔i5 7500功耗是65W,一块1080Ti需要250W(以后还想加一块),所以最后选择了Deepcool 750W Gold PSU。
机箱
我听从朋友的建议,选了Thermaltake N23机箱。只是没有LED灯,伤心。
组装
组装过程按下不表,装机也是个手艺,最后效果如下图所示。
安装软件
提示:如果你想装Windows系统,最好先安装Windows,再装Linux。要不然Windows会搞乱启动分区。
安装Ubuntu
大部分深度学习框架都工作在Linux环境中,所以我选择安装Ubuntu。一个2GB容量的U盘就能搞定安装,如何制作?
OSX用户参考这里:
https://www.ubuntu.com/download/desktop/create-a-usb-stick-on-macos
Windows用户参考这里:
https://rufus.akeo.ie/
我写这个教程的时候,Ubuntu 17.04版本刚刚发布,但是我选择了之前的16.04版本,因为老版本的相关文档可能更全一点。另外,我选择的是Ubuntu桌面版本,不过关闭了图形界面X,电脑启动会进入终端模式。
如果需要图形界面,只需要输入:startx
及时更新
更新可以使用下面这个命令
深度学习堆栈
为了展开深度学习,我们需要如下软件来使用GPU:
GPU驱动:让操作系统和显卡可以对话
CUDA:能让GPU运行通用目的代码
CuDNN:CUDA之上的神经网络加速库
深度学习框架:TensorFlow等
安装GPU驱动
最新的驱动,可以参考官网
http://nvidia.com/Download/index.aspx
或者直接使用如下代码安装:
安装CUDA
可以从Nvidia下载CUDA,地址如下:
https://developer.nvidia.com/cuda-downloads
或者直接运行如下的代码:
安装好CUDA之后,下面的代码能把CUDA添加到PATH变量:
现在可以检验一下CUDA装好没有,运行如下代码即可:
删除CUDA或GPU驱动,可以参考如下代码:
安装CuDNN
我用的是CuDNN 5.1,因为最新的TensorFlow不支持CuDNN 6。下载CuDNN,你需要创建一个免费的开发者账号。下载之后,用如下命令安装。
Anaconda
Anaconda是一个很棒的Python软件包管理器,我现在使用了Python 3.6版本,所以对应的使用Anaconda 3版本,安装如下:
TensorFlow
最流行的深度学习框架,安装:
为了检查一下TensorFlow安装好没有,可以运行MNIST看看:
应该能在训练过程中,看到loss的逐渐减少:
Keras
一个高级神经网络框架,安装非常简单:
PyTorch
深度学习框架届的新兵,但也值得推荐,安装命令:
Jupyter notebook
Jupyter是一个交互式的笔记本,随着Anaconda安装,我们要配置和测试一下:
现在打开 http://localhost:8888 ,应该就能看到Jupyter的界面。
我们可以把Jupyter设置成自动启动,使用crontab来设置。运行crontab -e,然后把如下代码添加在最后。
测试
现在基本上准备妥当了,是时候测试一下了。参加此次对比的几个选手是:
AWS P2实例GPU(K80)
AWS P2虚拟CPU
英伟达GTX 1080 Ti
英特尔i5 7500
MNIST多层感知器
MNIST数据集由70000手写数字组成。我们在这个数据集上运行了一个使用多层感知器(MLP)的Keras案例,代码地址:
https://github.com/fchollet/keras/blob/master/examples/mnist_mlp.py
MLP的意思是只使用全连接的层,而不用卷积。这个模型在这个数据集上进行了20次训练,实现了超过98%的准确率。
可以看到在训练这个模型时,GTX 1080 Ti比AWS P2 K80快2.4倍,这有点惊人,因为两个显卡的性能应该差不多,我觉得可能是AWS上有降频或者受到虚拟化的影响。
CPU的表现比GPU慢9倍。有趣的是,i5 7500比亚马逊的虚拟CPU快2.3倍。
VGG微调
为Kaggle猫狗识别竞赛而微调一个VGG网络。使用相同的batch在CPU上运行这个模型不可行,所以我们在GPU上微调了390个batch,在CPU上是10个batch。代码如下:
https://github.com/slavivanov/cats_dogs_kaggle
这次1080 Ti比AWS P2 K80快5.5倍。CPU在这个环节的表现,最多慢了200倍。
Wasserstein GAN
生成对抗网络(GAN)用来训练模型产生图像。Wasserstein GAN是原始GAN的一个改进版。我这里用了一个PyTorch实现,代码地址:
https://github.com/martinarjovsky/WassersteinGAN
这个模型需要50步训练,CPU在这个训练中不予考虑。
GTX 1080 Ti比AWS P2 K80快5.5倍。
风格迁移
最后一个测试是在TensorFlow上的风格迁移实现,代码地址:
https://github.com/slavivanov/Style-Tranfer
GTX 1080 Ti比AWS P2 K80快4.3倍。CPU比GPU慢30-50倍。
好啦,关于万元打造一个深度学习系统的分享,就先到这里。
各位端午节快乐。
【完】
招聘
我们正在招募编辑记者、运营等岗位,工作地点在北京中关村,期待你的到来,一起体验人工智能的风起云涌。
相关细节,请在公众号对话界面,回复:“招聘”两个字。
One More Thing…
今天AI界还有哪些事值得关注?在量子位(QbitAI)公众号会话界面回复“今天”,看我们全网搜罗的AI行业和研究动态。笔芯~
相关推荐
- 用Steam启动Epic游戏会更快吗?(epic怎么用steam启动)
-
Epic商店很香,但也有不少抱怨,其中一条是启动游戏太慢。那么,如果让Steam启动Epic游戏,会不会速度更快?众所周知,Steam可以启动非Steam游戏,方法是在客户端左下方点击“添加游戏”,然...
- Docker看这一篇入门就够了(dockerl)
-
安装DockerLinux:$curl-fsSLhttps://get.docker.com-oget-docker.sh$sudoshget-docker.sh注意:如果安装了旧版...
- AYUI 炫丽PC开发UI框架2016年6月15日对外免费开发使用 [1]
-
2016年6月15日,我AY对外发布AYUI(WPF4.0开发)的UI框架,开发时候,你可以无任何影响的去开发PC电脑上的软件exe程序。AYUI兼容XP操作系统,在Win7/8/8.1/10上都顺利...
- 别再说C#/C++套壳方案多了!Tauri这“借壳生蛋”你可能没看懂!
-
浏览器套壳方案,C#和C++有更多,你说的没错,从数量和历史积淀来看,C#和C++确实有不少方式来套壳浏览器,让Web内容在桌面应用里跑起来。但咱们得把这套壳二字掰扯清楚,因为这里面学问可大了!不同的...
- OneCode 核心概念解析——Page(页面)
-
在接触到OneCode最先接触到的就是,Page页面,在低代码引擎中,页面(Page)设计的灵活性是平衡“快速开发”与“复杂需求适配”的关键。以下从架构设计、组件系统、配置能力等维度,解析确...
- React是最后的前端框架吗,为什么这么说的?
-
油管上有一位叫Theo的博主说,React是终极前端框架,为什么这么说呢?让我们来看看其逻辑:这个标题看起来像假的,对吧?React之后明明有无数新框架诞生,凭什么说它是最后一个?我说的“最后一个”不...
- 面试辅导(二):2025前端面试密码:用3个底层逻辑征服技术官
-
面试官放下简历,手指在桌上敲了三下:"你上次解决的技术难题,现在回头看有什么不足?"眼前的候选人瞬间僵住——这是上周真实发生在蚂蚁金服终面的场景。2025年的前端战场早已不是框架熟练...
- 前端新星崛起!Astro框架能否终结React的霸主地位?
-
引言:当"背着背包的全能选手"遇上"轻装上阵的短跑冠军"如果你是一名前端开发者,2024年的框架之争绝对让你眼花缭乱——一边是React这位"背着全家桶的全能选...
- 基于函数计算的 BFF 架构(基于函数计算的 bff 架构是什么)
-
什么是BFFBFF全称是BackendsForFrontends(服务于前端的后端),起源于2015年SamNewman一篇博客文章《Pattern:BackendsFor...
- 谷歌 Prompt Engineering 白皮书:2025年 AI 提示词工程的 10 个技巧
-
在AI技术飞速发展的当下,如何更高效地与大语言模型(LLM)沟通,以获取更准确、更有价值的输出,成为了一个备受关注的问题。谷歌最新发布的《PromptEngineering》白皮书,为这一问题提供了...
- 光的艺术:灯具创意设计(灯光艺术作品展示)
-
本文转自|艺术与设计微信号|artdesign_org_cn“光”是文明的起源,是思维的开端,同样也是人类睁眼的开始。每个人在出生一刻,便接受了光的照耀和洗礼。远古时候,人们将光奉为神明,用火来...
- MoE模型已成新风口,AI基础设施竞速升级
-
机器之心报道编辑:Panda因为基准测试成绩与实际表现相差较大,近期开源的Llama4系列模型正陷入争议的漩涡之中,但有一点却毫无疑问:MoE(混合专家)定然是未来AI大模型的主流范式之一。...
- Meta Spatial SDK重大改进:重塑Horizon OS应用开发格局
-
由文心大模型生成的文章摘要Meta持续深耕SpatialSDK技术生态,提供开自去年9月正式推出以来,Meta持续深耕其SpatialSDK技术生态,通过一系列重大迭代与功能增强,不断革新H...
- "上云"到底是个啥?用"租房"给你讲明白IaaS/PaaS/SaaS的区别
-
半夜三点被机房报警电话惊醒,顶着黑眼圈排查服务器故障——这是十年前互联网公司运维的日常。而现在,程序员小王正敷着面膜刷剧,因为公司的系统全"搬"到了云上。"部署到云上"...
- php宝塔搭建部署thinkphp机械设备响应式企业网站php源码
-
大家好啊,欢迎来到web测评。本期给大家带来一套php开发的机械设备响应式企业网站php源码,上次是谁要的系统项目啊,帮你找到了,还说不会搭建,让我帮忙录制一期教程,趁着今天有空,简单的录制测试了一下...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- 用Steam启动Epic游戏会更快吗?(epic怎么用steam启动)
- Docker看这一篇入门就够了(dockerl)
- AYUI 炫丽PC开发UI框架2016年6月15日对外免费开发使用 [1]
- 别再说C#/C++套壳方案多了!Tauri这“借壳生蛋”你可能没看懂!
- OneCode 核心概念解析——Page(页面)
- React是最后的前端框架吗,为什么这么说的?
- 面试辅导(二):2025前端面试密码:用3个底层逻辑征服技术官
- 前端新星崛起!Astro框架能否终结React的霸主地位?
- 基于函数计算的 BFF 架构(基于函数计算的 bff 架构是什么)
- 谷歌 Prompt Engineering 白皮书:2025年 AI 提示词工程的 10 个技巧
- 标签列表
-
- 框架图 (58)
- flask框架 (53)
- quartz框架 (51)
- abp框架 (47)
- jpa框架 (47)
- springmvc框架 (49)
- 分布式事务框架 (65)
- scrapy框架 (56)
- shiro框架 (61)
- 定时任务框架 (56)
- java日志框架 (61)
- JAVA集合框架 (47)
- mfc框架 (52)
- abb框架断路器 (48)
- ui自动化框架 (47)
- beego框架 (52)
- java框架spring (58)
- grpc框架 (55)
- ppt框架 (48)
- 内联框架 (52)
- cad怎么画框架 (58)
- ps怎么画框架 (47)
- ssm框架实现登录注册 (49)
- oracle字符串长度 (48)
- oracle提交事务 (47)