百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

多伦多大学提出注意式吸引器网络,实现渐进式少量次学习

ccwgpt 2024-10-29 13:23 23 浏览 0 评论

选自 arXiv

作者:Mengye Ren、Renjie Liao等

机器之心编译

参与:Panda

少量次学习(Few-Shot Learning)一直以来都是机器学习领域内的一个重要研究主题。近日,多伦多大学一组研究团队,提出了一种使用注意式吸引器网络的渐进式少量次学习方法,能在记住基础类别的同时很好地学习全新的类别。

论文:https://arxiv.org/abs/1810.07218

代码:https://github.com/renmengye/inc-few-shot-attractor-public

引言

通常,机器学习分类器的训练目标是识别一组预定义的类别,但是很多应用往往需要机器学习能通过有限的数据灵活地学习额外的概念,而且无需在整个训练集上重新训练。

这篇论文提出的渐进式少量次学习(incremental few-shot learning)能够解决这个问题,其中已经训练好的常规分类网络能够识别一组基础类别,同时也会考虑一些额外的全新类别,包括仅有少量有标注的样本地一些类别。在学习了全新的类别后,这个模型会在基础类别与全新类别的整体分类表现上被重新评估。为此,作者提出了一种元学习模型:注意式吸引器网络(Attention Attractor Network)。它可以调整对全新类别的学习规范,在每个 episode 中,作者都会训练一组新的用于识别全新类别的权重,直到它们收敛,而且作者还表明这种循环式反向传播技术可以在整个优化过程中反向传播,并能促进对这些参数的学习。研究表明,学习得到的吸引器网络无需回顾原始的训练集,就能在记住旧有类别的同时助力对全新类别的识别,其表现也胜过多种基准。

作者在 mini-ImageNet 和 tiered-ImageNet 上进行了实验,结果表明新提出的方法在渐进式少量次学习方面达到了当前最佳水平。

?

图 1:新提出的用于渐进式少量次学习的注意式吸引器网络。在预训练期间,网络学习基础类别权重 W_a 和特征提取器 CNN 骨干网络。在元学习阶段则是一个少量次学习 episode。

模型

首先,这一节定义了渐进式少量次学习的设置,然后会介绍新提出的模型:注意式吸引器网络。该模型能通过使用吸引器正则化项,根据少量次训练数据来实现对基础类别集的关注。图 1 给出了该方法的较高水平的模型示意图。

渐进式少量次学习

实现渐进式少量次学习的元学习方法的大致过程为:(1)在一个基础类别集上,学习一组固定的特征表征和一个分类器;(2)在每个训练和测试 episode 中,使用元学习得到的正则化器训练一个新类别分类器;(3)基于组合到一起的新类别和基础类别分类数据,对元学习的正则化器进行优化和适应,使其也能在基础分类器上取得良好的表现。这些阶段的详情如下:

预训练阶段:在基础类别数据集 D_a 上学习一个常规监督式分类任务的基础模型。这个阶段的目的是学习得到一个优良的基础分类器和优良的表征。基础分类器的参数是在这个阶段学习得到的,并会在预训练之后固定下来。

渐进式少量次 episode:在一个少量次数据集 D_b 上,采样少量次 episode E。注意这个数据集可能与预训练数据集 D_a 的数据源相同,但采样是按 episode 来的。

元学习阶段:元训练阶段会迭代式地采样少量次 episode E 并尝试学习元参数,使得让联合查询数据集 Q_(a+b) 上的联合预测损失最小化。作者特别指出他们设计的正则化器 R(·, θ) 能通过最小化损失 l(W_b, S_b)+R(W_b, θ) 来快速学习权重,其中 l(W_b, S_b) 通常是用于少量次分类的交叉熵损失。

基础类别与全新类别上的联合预测:现在介绍每个少量次 episode 中执行的联合预测框架的细节。首先,构建一个 episode 式的分类器,比如一个 logistic 回归模型或多层感知器;该模型以所学习到的特征为输入,并根据少量次类别对它们进行分类。在支持集 S_b 上训练期间,可通过最小化以下正则化的交叉熵目标来学习快速权重,作者将这个目标称为「episodic objective」:

?

注意式吸引器网络

直接学习少量次 episode(比如通过将 R(W_b, θ) 设置为 0 或简单的权重延迟)会导致对基础类别的灾难性遗忘。原因是,为最大化正确的全新类别概率而训练的 W_b 可能会在联合预测中支配基础类别。为了解决这一问题,作者提出了注意式吸引器网络。这种吸引器网络的关键特点是正则化项 R(W_b, θ):

?

为了确保模型在基础类别上表现良好,吸引器必须包含一些基础类别样本的有关信息。由于无法直接读取这些基础样本,作者提出使用慢权重(slow weights)来编码这样的信息。具体来说,每个基础类别都有一个学习后的吸引器向量 U_k,其存储在内存矩阵 U=[U_1, ..., U_K] 中。

对于支持集中的每个类别,模型都会计算该类别的平均表征与基础权重 W_a 之间的余弦相似度,然后会使用一个 softmax 函数进行归一化:

?

这种设计的灵感来自 M. C. Mozer 等人提出的吸引器网络,针对每个基础类别都会有保存了与该类别有关的相关记忆的一个「吸引器」。作者将他们提出的整个模型称为「动态吸引器(dynamic attractor)」,因为它们可能会随每个 episode(即使是在元学习之后)而变化。

在元学习期间,θ 会被更新,以最小化查询集 Q_(a+b)(查询集包含基础类别和全新的类别)的预期损失,并求取所有少量次学习 episode 上的平均:

?

实验

作者在两个少量次分类数据集 mini-ImageNet 和 tiered-ImageNet 上进行了实验。这两个数据集都是 ImageNet 的子集,其图像大小被减少到了 84×84 像素。作者还对这两个数据集进行了一些修改,使其满足渐进式少量次学习的设置。

实验设置

作者使用的骨干网络是一个标准的 ResNet,可通过监督式训练学习特征表征。对于 mini-ImageNet 实验,作者使用的是一个修改版的 ResNet-10。对于 tiered-ImageNet 则使用了 ResNet-18,但使用分组归一化(group normalization)层替换了其中所有的分批归一化(batch normalization)层;原因是由于类别的划分方式,tiered-ImageNet 从训练到测试时有较大的分布转变。

评估指标

作者考虑了以下评估指标:(1)在单个查询集和联合查询集(Base、Novel 和 Both)上的总体准确度;(2)在基础类别和全新类别之中分别考虑的由联合预测导致的表现下降(?_a 和 ?_b)。最后,对两者求平均:?=1/2(?_a + ?_b),得到整体准确度下降的关键指标。

比较

作者实现了三种方法,并对它们进行了比较,即 Prototypical Networks(调整到了适用于渐进式少量次学习的设置)、Weights Imprinting 和 Learning without Forgetting。

结果

?

表 2:mini-ImageNet 上 64+5-way 结果;64+5-way 表示基础类别数为 64,全新类别数为 5。? 是指在基础类别和全新类别中的由联合预测所导致的平均准确度下降(?=1/2(?_a + ?_b));↑ (↓) 表示更高(更低)更好。

?

表 3:tiered-ImageNet 上 200+5-way 结果;200+5-way 表示基础类别数为 200,全新类别数为 5

为了理解所提出的模型的每个部分的有效性,作者研究了以下变体:基本模型(LR、MLP)、静态吸引器(+S)和注意式吸引器(+A)。

表 4 和 5 给出了消融实验的结果。在所有案例中,学习得到的正则化函数都比为分类器网络人工设置权重延迟常数的表现更好;不管是联合预测基础类别和全新类别,还是相比于单个预测的劣化更低方面都是如此。在 mini-ImageNet 上,新提出的注意式吸引器相比于静态吸引器优势明显。

?

表 4:在 mini-ImageNet 上的消融实验;+S 表示静态吸引器,+A 表示注意式吸引器。

?

表 5:在 tiered-ImageNet 上的消融实验。

如图 2 所示,T-BPTT 学习到的模型的表现与作者提出的模型相当;但是,当在测试时间解决收敛问题时,T-BPTT 模型的表现会显著下降。而对 RBP 模型而言,由于支持样本数量小,完成完整 episode 训练的速度很快。

?

图 2:使用 T-BPTT 和 RBP 学习所提出的模型的表现比较。

图 3 给出了吸引器动态的可视化结果。可以看到,作者提出的吸引器能将快速权重向基础类别权重推进。相比而言,Gidaris 和 Komodakis 提出的 LwoF(learning without forgetting)方法仅对原型有略微的修改。

?

图 3:使用 PCA 得到的 5-shot 64+5-way episode 的可视化。左图:新提出的吸引器模型能学习将原型(较大的有颜色的圈)「推向」基础类别权重(白圈)。右图:无遗忘的动态少量次学习。

图 4 表明,所学习到的正则化器总是优于仅使用权重衰减的基准。由于在骨干网络上的表征更好,基础类别数量从 50 增至 150 时,整体准确度也在增长。而由于在类别数量为 200 时分类任务的难度更大,整体准确度有所下降。

?

图 4:当基础类别数量为 {50, 100, 150, 200} 时在 tiered-ImageNet 上的结果。

?

表 6:在 mini-ImageNet 上的常规 5-way 少量次分类结果。注意这是纯粹的少量次,没有基础类别。

?

表 7:在 mini-ImageNet 上 64+5-way 全消融实验的结果。

?

表 8:在 tiered-ImageNet 上 200+5-way 全消融实验的结果。

?

表 9:mini-ImageNet 和 tiered-ImageNet 的数据集划分情况。

相关推荐

滨州维修服务部“一区一策”强服务

今年以来,胜利油田地面工程维修中心滨州维修服务部探索实施“一区一策”服务模式,持续拓展新技术应用场景,以优质的服务、先进的技术,助力解决管理区各类维修难题。服务部坚持问题导向,常态化对服务范围内的13...

谷歌A2A协议和MCP协议有什么区别?A2A和MCP的差异是什么?

在人工智能的快速发展中,如何实现AI模型与外部系统的高效协作成为关键问题。谷歌主导的A2A协议(Agent-to-AgentProtocol)和Anthropic公司提出的MCP协议(ModelC...

谷歌大脑用架构搜索发现更好的特征金字塔结构,超越Mask-RCNN等

【新智元导读】谷歌大脑的研究人员发表最新成果,他们采用神经结构搜索发现了一种新的特征金字塔结构NAS-FPN,可实现比MaskR-CNN、FPN、SSD更快更好的目标检测。目前用于目标检测的最先...

一文彻底搞懂谷歌的Agent2Agent(A2A)协议

前段时间,相信大家都被谷歌发布的Agent2Agent开源协议刷屏了,简称A2A。谷歌官方也表示,A2A是在MCP之后的补充,也就是MCP可以强化大模型/Agent的能力,但每个大模型/Agent互为...

谷歌提出创新神经记忆架构,突破Transformer长上下文限制

让AI模型拥有人类的记忆能力一直是学界关注的重要课题。传统的深度学习模型虽然在许多任务上取得了显著成效,但在处理需要长期记忆的任务时往往力不从心。就像人类可以轻松记住数天前看过的文章重点,但目前的...

不懂设计?AI助力,人人都能成为UI设计师!

最近公司UI资源十分紧张,急需要通过AI来解决UI人员不足问题,我在网上发现了几款AI应用非常适合用来进行UI设计。以下是一些目前非常流行且功能强大的工具,它们能够提高UI设计效率,并帮助设计师创造出...

速来!手把手教你用AI完成UI界面设计

晨星技术说晨星技术小课堂第二季谭同学-联想晨星用户体验设计师-【晨星小课堂】讲师通过简单、清晰的语言描述就能够用几十秒自动生成一组可编辑的UI界面,AIGC对于UI设计师而言已经逐步发展成了帮助我们...

「分享」一端录制,多端使用的便捷 UI 自动化测试工具,开源

一、项目介绍Recorder是一款UI录制和回归测试工具,用于录制浏览器页面UI的操作。通过UIRecorder的录制功能,可以在自测的同时,完成测试过程的录制,生成JavaScr...

APP自动化测试系列之Appium介绍及运行原理

在面试APP自动化时,有的面试官可能会问Appium的运行原理,以下介绍Appium运行原理。Appium介绍Appium概念Appium是一个开源测试自动化框架,可用于原生,混合和移动Web应用程序...

【推荐】一个基于 SpringBoot 框架开发的 OA 办公自动化系统

如果您对源码&技术感兴趣,请点赞+收藏+转发+关注,大家的支持是我分享最大的动力!!!项目介绍oasys是一个基于springboot框架开发的OA办公自动化系统,旨在提高组织的日常运作和管理...

自动化实践之:从UI到接口,Playwright给你全包了!

作者:京东保险宋阳1背景在车险系统中,对接保司的数量众多。每当系统有新功能迭代后,基本上各个保司的报价流程都需要进行回归测试。由于保司数量多,回归测试的场景也会变得重复而繁琐,给测试团队带来了巨大的...

销帮帮CRM移动端UI自动化测试实践:Playwright的落地与应用

实施背景销帮帮自2015年成立以来,移动端UI自动化测试的落地举步维艰,移动端的UI自动化测试一直以来都未取得良好的落地。然而移动互联网时代,怎样落地移动端的UI自动化测试以快速稳定进行移动端的端到端...

编写自动化框架不知道该如何记录日志吗?3个方法打包呈现给你。

目录结构1.loguru介绍1.1什么是日志?程序运行过程中,难免会遇到各种报错。如果这种报错是在本地发现的,你还可以进行debug。但是如果程序已经上线了,你就不能使用debug方式了...

聊聊Python自动化脚本部署服务器全流程(详细)

来源:AirPython作者:星安果1.前言大家好,我是安果!日常编写的Python自动化程序,如果在本地运行稳定后,就可以考虑将它部署到服务器,结合定时任务完全解放双手但是,由于自动化程序与平...

「干货分享」推荐5个可以让你事半功倍的Python自动化脚本

作者:俊欣来源:关于数据分析与可视化相信大家都听说自动化流水线、自动化办公等专业术语,在尽量少的人工干预的情况下,机器就可以根据固定的程序指令来完成任务,大大提高了工作效率。今天小编来为大家介绍几个P...

取消回复欢迎 发表评论: